37
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the precoder design of a wireless energy harvesting node in linear vector Gaussian channels with arbitrary input distribution

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A Wireless Energy Harvesting Node (WEHN) operating in linear vector Gaussian channels with arbitrarily distributed input symbols is considered in this paper. The precoding strategy that maximizes the mutual information along N independent channel accesses is studied under non-causal knowledge of the channel state and harvested energy (commonly known as offline approach). It is shown that, at each channel use, the left singular vectors of the precoder are equal to the eigenvectors of the Gram channel matrix. Additionally, an expression that relates the optimal singular values of the precoder with the energy harvesting profile through the Minimum Mean-Square Error (MMSE) matrix is obtained. Then, the specific situation in which the right singular vectors of the precoder are set to the identity matrix is considered. In this scenario, the optimal offline power allocation, named Mercury Water-Flowing, is derived and an intuitive graphical representation is presented. Two optimal offline algorithms to compute the Mercury Water- Flowing solution are proposed and an exhaustive study of their computational complexity is performed. Moreover, an online algorithm is designed, which only uses causal knowledge of the harvested energy and channel state. Finally, the achieved mutual information is evaluated through simulation.

          Related collections

          Author and article information

          Journal
          2013-01-28
          Article
          1301.6473
          f92c3d66-70ac-4975-be2a-b53c21ae2cab

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Extended version of a manuscript accepted in IEEE Transactions on Communications
          cs.IT math.IT

          Numerical methods,Information systems & theory
          Numerical methods, Information systems & theory

          Comments

          Comment on this article