Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Iterative expansion microscopy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We recently discovered it was possible to physically magnify preserved biological specimens by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ~4.5x in linear dimension, a process we call expansion microscopy (ExM). Here we describe iterative expansion microscopy (iExM), in which a sample is expanded, then a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and finally the sample is expanded again. iExM expands biological specimens ~4.5 × 4.5 or ~20x, and enables ~25 nm resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps

          The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans 4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT

            While super-resolution fluorescence microscopy is a powerful tool for biological research, obtaining multiplexed images for a large number of distinct target species remains challenging. Here we use the transient binding of short fluorescently labeled oligonucleotides (DNA-PAINT, point accumulation for imaging in nanoscale topography) for simple and easy-to-implement multiplexed 3D super-resolution imaging inside fixed cells and achieve sub-10 nm spatial resolution in vitro using synthetic DNA structures. We also report a novel approach for multiplexing (Exchange-PAINT) that allows sequential imaging of multiple targets using only a single dye and a single laser source. We experimentally demonstrate ten-“color” super-resolution imaging in vitro on synthetic DNA structures and four-“color” imaging of proteins in a fixed cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.

              We report a water-based optical clearing agent, SeeDB, which clears fixed brain samples in a few days without quenching many types of fluorescent dyes, including fluorescent proteins and lipophilic neuronal tracers. Our method maintained a constant sample volume during the clearing procedure, an important factor for keeping cellular morphology intact, and facilitated the quantitative reconstruction of neuronal circuits. Combined with two-photon microscopy and an optimized objective lens, we were able to image the mouse brain from the dorsal to the ventral side. We used SeeDB to describe the near-complete wiring diagram of sister mitral cells associated with a common glomerulus in the mouse olfactory bulb. We found the diversity of dendrite wiring patterns among sister mitral cells, and our results provide an anatomical basis for non-redundant odor coding by these neurons. Our simple and efficient method is useful for imaging intact morphological architecture at large scales in both the adult and developing brains.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                23 March 2017
                17 April 2017
                June 2017
                17 October 2017
                : 14
                : 6
                : 593-599
                Affiliations
                [1 ]Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
                [2 ]Department of Biomedical Engineering, Sungkyunkwan University, Seoul, Korea
                [3 ]Department of Biological Engineering, MIT, Cambridge, MA, USA
                [4 ]Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
                [5 ]Harvard Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
                [6 ]Applied Physics, Harvard University, Cambridge, MA, USA
                [7 ]Health Sciences and Technology, MIT, Cambridge, MA, USA
                [8 ]Department of Mechanical Engineering, MIT, Cambridge, MA, USA
                [9 ]Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
                [10 ]McGovern Institute, MIT, Cambridge, MA, USA
                [11 ]Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
                Author notes
                Correspondence should be addressed to E.S.B ( esb@ 123456media.mit.edu )
                Article
                NIHMS862423
                10.1038/nmeth.4261
                5560071
                28417997
                f947ad23-c078-41f9-8826-fab32cfb2f30

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article