Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
4 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The uncertainties around the hydrological and socio-economic implications of climate change pose a challenge for Nile River system management, especially with rapidly rising demands for river-system-related services and political tensions between the riparian countries. Cooperative adaptive management of the Nile can help alleviate some of these stressors and tensions. Here we present a planning framework for adaptive management of the Nile infrastructure system, combining climate projections; hydrological, river system and economy-wide simulators; and artificial intelligence multi-objective design and machine learning algorithms. We demonstrate the utility of the framework by designing a cooperative adaptive management policy for the Grand Ethiopian Renaissance Dam that balances the transboundary economic and biophysical interests of Ethiopia, Sudan and Egypt. This shows that if the three countries compromise cooperatively and adaptively in managing the dam, the national-level economic and resilience benefits are substantial, especially under climate projections with the most extreme streamflow changes.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

            Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Climate Change
                Nat. Clim. Chang.
                Springer Science and Business Media LLC
                1758-678X
                1758-6798
                January 2023
                January 09 2023
                January 2023
                : 13
                : 1
                : 48-57
                Article
                10.1038/s41558-022-01556-6
                f9811534-dcc3-44a7-98f8-5d96e21d3487
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article