17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biochemical reaction networks are self-regulated in part due to feedback activation mechanisms. The tissue factor (TF) pathway of blood coagulation is a complex reaction network controlled by multiple feedback loops that coalesce around the serine protease thrombin.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          New fundamentals in hemostasis.

          Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factor XI activation in a revised model of blood coagulation.

            Coagulation factor XI is activated in vitro by factor XIIa in the presence of high molecular weight kininogen (HMWK) and a negatively charged surface. Factor XII deficiency is not associated with bleeding, which suggests that another mechanism for factor XI activation exists in vivo. A revised model of coagulation is proposed in which factor XI is activated by thrombin. In the absence of cofactors, thrombin is more effective (kcat/Km = 1.6 x 10(5)) than factor XIIa (1.7 x 10(4)) in activating factor XI. Dextran sulfate enhances activation of factor XI by thrombin 2000-fold; part of this effect is due to autoactivation of factor XI by activated factor XI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The dynamics of thrombin formation.

              The central event of the hemostatic process is the generation of thrombin through the tissue factor pathway. This is a highly regulated, dynamic process in which thrombin itself plays many roles, positively and negatively its production and destruction. The hemostatic process is essential to normal physiology and is also the Achilles heel of our aging population. The inappropriate generation of thrombin may lead to vascular occlusion with the consequence of myocardial infarction, stroke, pulmonary embolism, or venous thrombosis. In this review, we summarize our present views regarding the tissue factor pathway by which thrombin is generated and the roles played by extrinsic and intrinsic factor Xa generating complexes in hemostasis and the roles of the stoichiometric and dynamic inhibitors that regulate thrombin generation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Thrombosis and Haemostasis
                Journal of Thrombosis and Haemostasis
                Wiley
                15387836
                June 2022
                June 2022
                : 20
                : 6
                : 1350-1363
                Article
                10.1111/jth.15716
                9590754
                35352494
                fa2c55f8-662a-4a0a-b10d-f82f47ecf29c
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article