47
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Drug repurposing for antimicrobial discovery

      ,
      Nature Microbiology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing-the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen.

          In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A standard database for drug repositioning

            Drug repositioning, the process of discovering, validating, and marketing previously approved drugs for new indications, is of growing interest to academia and industry due to reduced time and costs associated with repositioned drugs. Computational methods for repositioning are appealing because they putatively nominate the most promising candidate drugs for a given indication. Comparing the wide array of computational repositioning methods, however, is a challenge due to inconsistencies in method validation in the field. Furthermore, a common simplifying assumption, that all novel predictions are false, is intellectually unsatisfying and hinders reproducibility. We address this assumption by providing a gold standard database, repoDB, that consists of both true positives (approved drugs), and true negatives (failed drugs). We have made the full database and all code used to prepare it publicly available, and have developed a web application that allows users to browse subsets of the data (http://apps.chiragjpgroup.org/repoDB/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data.

              Drug repositioning, or the application of known drugs to new indications, is a challenging issue in pharmaceutical science. In this study, we developed a new computational method to predict unknown drug indications for systematic drug repositioning in a framework of supervised network inference. We defined a descriptor for each drug-disease pair based on the phenotypic features of drugs (e.g., medicinal effects and side effects) and various molecular features of diseases (e.g., disease-causing genes, diagnostic markers, disease-related pathways, and environmental factors) and constructed a statistical model to predict new drug-disease associations for a wide range of diseases in the International Classification of Diseases. Our results show that the proposed method outperforms previous methods in terms of accuracy and applicability, and its performance does not depend on drug chemical structure similarity. Finally, we performed a comprehensive prediction of a drug-disease association network consisting of 2349 drugs and 858 diseases and described biologically meaningful examples of newly predicted drug indications for several types of cancers and nonhereditary diseases.
                Bookmark

                Author and article information

                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Nature
                2058-5276
                March 4 2019
                Article
                10.1038/s41564-019-0357-1
                30833727
                fa316e3b-481b-4d67-9a81-23437b22bf72
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article