0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sagnac interference in integrated photonics

      , , ,
      Applied Physics Reviews
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a fundamental optical approach to interferometry, Sagnac interference has been widely used for reflection manipulation, precision measurements, and spectral engineering in optical systems. Compared to other interferometry configurations, it offers attractive advantages by yielding a reduced system complexity without the need for phase control between different pathways, thus offering a high degree of stability against external disturbance and a low wavelength dependence. The advance of integration fabrication techniques has enabled chip-scale Sagnac interferometers with greatly reduced footprint and improved scalability compared to more conventional approaches implemented by spatial light or optical fiber devices. This facilitates a variety of integrated photonic devices with bidirectional light propagation, showing new features and capabilities compared to unidirectional-light-propagation devices, such as Mach–Zehnder interferometers (MZIs) and ring resonators (RRs). This paper reviews functional integrated photonic devices based on Sagnac interference. First, the basic theory of integrated Sagnac interference devices is introduced, together with comparisons to other integrated photonic building blocks, such as MZIs, RRs, photonic crystal cavities, and Bragg gratings. Next, the applications of Sagnac interference in integrated photonics, including reflection mirrors, optical gyroscopes, basic filters, wavelength (de)interleavers, optical analogues of quantum physics, and others, are systematically reviewed. Finally, the open challenges and future perspectives are discussed.

          Related collections

          Most cited references394

          • Record: found
          • Abstract: found
          • Article: not found

          Microresonator-based optical frequency combs.

          The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Graphene photonics and optoelectronics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmon-Induced Transparency in Metamaterials

              A plasmonic "molecule" consisting of a radiative element coupled with a subradiant (dark) element is theoretically investigated. The plasmonic molecule shows electromagnetic response that closely resembles the electromagnetically induced transparency in an atomic system. Because of its subwavelength dimension, this electromagnetically induced transparency-like molecule can be used as a building block to construct a "slow light" plasmonic metamaterial.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Applied Physics Reviews
                AIP Publishing
                1931-9401
                March 01 2023
                March 2023
                March 01 2023
                February 15 2023
                March 2023
                : 10
                : 1
                Article
                10.1063/5.0123236
                fa349fe4-65a5-4289-a501-6cb34ebb64f4
                © 2023
                History

                Comments

                Comment on this article