19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial dysfunction in rheumatoid arthritis: A comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies have reported mitochondrial dysfunction in rheumatoid arthritis (RA). Many nuclear DNA (nDNA) encoded proteins translocate to mitochondria, but their participation in the dysfunction of this cell organelle during RA is quite unclear. In this study, we have carried out an integrative analysis of gene expression, protein-protein interactions (PPI) and gene ontology data. The analysis has identified potential implications of the nDNA encoded proteins in RA mitochondrial dysfunction. Firstly, by analysing six synovial microarray datasets of RA patients and healthy controls obtained from the gene expression omnibus (GEO) database, we found differentially expressed nDNA genes that encode mitochondrial proteins. We uncovered some of the roles of these genes in RA mitochondrial dysfunction using literature search and gene ontology analysis. Secondly, by employing gene co-expression from microarrays and collating reliable PPI from seven databases, we created the first mitochondrial PPI network that is specific to the RA synovial joint tissue. Further, we identified hubs of this network, and moreover, by integrating gene expression and network analysis, we found differentially expressed neighbours of the hub proteins. The results demonstrate that nDNA encoded proteins are (i) crucial for the elevation of mitochondrial reactive oxygen species (ROS) and (ii) involved in membrane potential, transport processes, metabolism and intrinsic apoptosis during RA. Additionally, we proposed a model relating to mitochondrial dysfunction and inflammation in the disease. Our analysis presents a novel perspective on the roles of nDNA encoded proteins in mitochondrial dysfunction, especially in apoptosis, oxidative stress-related processes and their relation to inflammation in RA. These findings provide a plethora of information for further research.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MINT: the Molecular INTeraction database

          The Molecular INTeraction database (MINT, ) aims at storing, in a structured format, information about molecular interactions (MIs) by extracting experimental details from work published in peer-reviewed journals. At present the MINT team focuses the curation work on physical interactions between proteins. Genetic or computationally inferred interactions are not included in the database. Over the past four years MINT has undergone extensive revision. The new version of MINT is based on a completely remodeled database structure, which offers more efficient data exploration and analysis, and is characterized by entries with a richer annotation. Over the past few years the number of curated physical interactions has soared to over 95 000. The whole dataset can be freely accessed online in both interactive and batch modes through web-based interfaces and an FTP server. MINT now includes, as an integrated addition, HomoMINT, a database of interactions between human proteins inferred from experiments with ortholog proteins in model organisms ().
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EMRE is an essential component of the mitochondrial calcium uniporter complex.

            The mitochondrial uniporter is a highly selective calcium channel in the organelle's inner membrane. Its molecular components include the EF-hand-containing calcium-binding proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 and the pore-forming subunit mitochondrial calcium uniporter (MCU). We sought to achieve a full molecular characterization of the uniporter holocomplex (uniplex). Quantitative mass spectrometry of affinity-purified uniplex recovered MICU1 and MICU2, MCU and its paralog MCUb, and essential MCU regulator (EMRE), a previously uncharacterized protein. EMRE is a 10-kilodalton, metazoan-specific protein with a single transmembrane domain. In its absence, uniporter channel activity was lost despite intact MCU expression and oligomerization. EMRE was required for the interaction of MCU with MICU1 and MICU2. Hence, EMRE is essential for in vivo uniporter current and additionally bridges the calcium-sensing role of MICU1 and MICU2 with the calcium-conducting role of MCU.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production.

              The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draft
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Software
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Software
                Role: Formal analysisRole: InvestigationRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 November 2019
                2019
                : 14
                : 11
                : e0224632
                Affiliations
                [1 ] Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
                [2 ] Manipal Academy of Higher Education, Manipal, Karnataka, India
                Ben-Gurion University of the Negev, ISRAEL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-8901-3128
                Article
                PONE-D-19-14453
                10.1371/journal.pone.0224632
                6839853
                31703070
                fa4ddcfa-3ce0-4891-a144-e24013c9b009
                © 2019 Panga et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 May 2019
                : 17 October 2019
                Page count
                Figures: 5, Tables: 9, Pages: 28
                Funding
                We thank the department of Information Technology, Biotechnology and Science & Technology (IT, BT and S&T), Government of Karnataka, India for infrastructure support. VP received fellowships from the Institute of Bioinformatics and Applied Biotechnology (IBAB) as well as from the Council of Scientific and Industrial Research (CSIR), Government of India (GoI) (File No. 09/1086(0001)/2012-EMR-1), URL: http://www.csirhrdg.res.in/. SR is a faculty at IBAB. This project was partially supported by a grant from the Department of Biotechnology, GoI (BTPR12422/MED/31/287/2014, URL: http://www.dbtindia.nic.in/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Bioenergetics
                Energy-Producing Organelles
                Mitochondria
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Energy-Producing Organelles
                Mitochondria
                Biology and Life Sciences
                Genetics
                Gene Expression
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Microarrays
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Death
                Apoptosis
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Gene Ontologies
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Gene Ontologies
                Computer and Information Sciences
                Network Analysis
                Protein Interaction Networks
                Biology and Life Sciences
                Biochemistry
                Proteomics
                Protein Interaction Networks
                Biology and Life Sciences
                Genetics
                Gene Identification and Analysis
                Genetic Networks
                Computer and Information Sciences
                Network Analysis
                Genetic Networks
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article