6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Read quality-based trimming of the distal ends of public fungal DNA sequences is nowhere near satisfactory

      , , , , ,

      MycoKeys

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA sequences are increasingly used for taxonomic and functional assessment of environmental communities. In mycology, the nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen marker for such pursuits. Molecular identification is associated with many challenges, one of which is low read quality of the reference sequences used for inference of taxonomic and functional properties of the newly sequenced community (or single taxon). This study investigates whether public fungal ITS sequences are subjected to sufficient trimming in their distal (5’ and 3’) ends prior to deposition in the public repositories. We examined 86 species (and 10,584 sequences) across the fungal tree of life, and we found that on average 13.1% of the sequences were poorly trimmed in one or both of their 5’ and 3’ ends. Deposition of poorly trimmed entries was found to continue through 2016. Poorly trimmed reference sequences add noise and mask biological signal in sequence similarity searches and phylogenetic analyses, and we provide a set of recommendations on how to manage the sequence trimming problem.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: not found
          • Article: not found

          Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gapped BLAST and PSI BLAST—a new generation of protein data base search programs

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved tools for biological sequence comparison.

              We have developed three computer programs for comparisons of protein and DNA sequences. They can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity. The FASTA program is a more sensitive derivative of the FASTP program, which can be used to search protein or DNA sequence data bases and can compare a protein sequence to a DNA sequence data base by translating the DNA data base as it is searched. FASTA includes an additional step in the calculation of the initial pairwise similarity score that allows multiple regions of similarity to be joined to increase the score of related sequences. The RDF2 program can be used to evaluate the significance of similarity scores using a shuffling method that preserves local sequence composition. The LFASTA program can display all the regions of local similarity between two sequences with scores greater than a threshold, using the same scoring parameters and a similar alignment algorithm; these local similarities can be displayed as a "graphic matrix" plot or as individual alignments. In addition, these programs have been generalized to allow comparison of DNA or protein sequences based on a variety of alternative scoring matrices.
                Bookmark

                Author and article information

                Journal
                MycoKeys
                MC
                Pensoft Publishers
                1314-4049
                1314-4057
                August 14 2017
                August 14 2017
                : 26
                : 13-24
                Article
                10.3897/mycokeys.26.14591
                © 2017

                Comments

                Comment on this article