27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Importance of Alaska for Climate Stabilization, Resilience, and Biodiversity Conservation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alaska is globally significant for its large tracts of intact habitats, which support complete wildlife assemblages and many of the world’s healthiest wild fisheries, while also storing significant amounts of carbon. Alaska has 1/3 of United States federal lands, the bulk of the United States’ intact and wild lands, and over half of the country’s total terrestrial ecosystem carbon on federal lands. Managing Alaska’s public lands for climate and biodiversity conservation purposes over the next 30–50 years would provide meaningful and irreplaceable climate benefits for the United States and globe. Doing so via a co-management approach with Alaska’s 229 federally recognized tribes is likely not only to be more effective but also more socially just. This paper lays out the scientific case for managing Alaska’s public lands for climate stabilization and resilience and addresses three primary questions: Why is Alaska globally meaningful for biodiversity and climate stabilization? Why should Alaska be considered as a key element of a climate stabilization and biodiversity conservation strategy for the United States? What do we need to know to better understand the role of Alaska given future scenarios? We summarize evidence for the role Alaska’s lands play in climate stabilization, as well as what is known about the role of land management in influencing carbon storage and sequestration. Finally, we summarize priority research that is needed to improve understanding of how policy and management prescriptions are likely to influence the role Alaska plays in global climate stabilization and adaptation.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Status and ecological effects of the world's largest carnivores.

          Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural climate solutions

            Significance Most nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We show that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C. Alongside aggressive fossil fuel emissions reductions, NCS offer a powerful set of options for nations to deliver on the Paris Climate Agreement while improving soil productivity, cleaning our air and water, and maintaining biodiversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Old-growth forests as global carbon sinks.

              Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.
                Bookmark

                Author and article information

                Journal
                Frontiers in Forests and Global Change
                Front. For. Glob. Change
                Frontiers Media SA
                2624-893X
                August 23 2021
                August 23 2021
                : 4
                Article
                10.3389/ffgc.2021.701277
                fac5dae0-5667-4f7f-8015-fae6d2627be9
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article