5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils

      , , , ,
      Biomedicines
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: not found
          • Article: not found

          Antidepressant effects of ketamine in depressed patients

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.

            Existing therapies for major depression have a lag of onset of action of several weeks, resulting in considerable morbidity. Exploring pharmacological strategies that have rapid onset of antidepressant effects within a few days and that are sustained would have an enormous impact on patient care. Converging lines of evidence suggest the role of the glutamatergic system in the pathophysiology and treatment of mood disorders. To determine whether a rapid antidepressant effect can be achieved with an antagonist at the N-methyl-D-aspartate receptor in subjects with major depression. A randomized, placebo-controlled, double-blind crossover study from November 2004 to September 2005. Mood Disorders Research Unit at the National Institute of Mental Health. Patients Eighteen subjects with DSM-IV major depression (treatment resistant). After a 2-week drug-free period, subjects were given an intravenous infusion of either ketamine hydrochloride (0.5 mg/kg) or placebo on 2 test days, a week apart. Subjects were rated at baseline and at 40, 80, 110, and 230 minutes and 1, 2, 3, and 7 days postinfusion. Main Outcome Measure Changes in scores on the primary efficacy measure, the 21-item Hamilton Depression Rating Scale. Subjects receiving ketamine showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week. The effect size for the drug difference was very large (d = 1.46 [95% confidence interval, 0.91-2.01]) after 24 hours and moderate to large (d = 0.68 [95% confidence interval, 0.13-1.23]) after 1 week. Of the 17 subjects treated with ketamine, 71% met response and 29% met remission criteria the day following ketamine infusion. Thirty-five percent of subjects maintained response for at least 1 week. Robust and rapid antidepressant effects resulted from a single intravenous dose of an N-methyl-D-aspartate antagonist; onset occurred within 2 hours postinfusion and continued to remain significant for 1 week.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of ketamine action as an antidepressant

              Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions in treatment-resistant patients. Although this finding has been met with enthusiasm, ketamine’s widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the unique antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine’s antidepressant actions but lack its undesirable effects. Here, we review hypotheses for the mechanism of action of ketamine as an antidepressant, including direct synaptic or extra-synaptic (GluN2B-selective) NMDAR inhibition, selective inhibition of NMDARs localized on GABAergic interneurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) activation. We also discuss links between ketamine’s antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR), and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine’s ( R )-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically ( 2R,6R )-HNK, are also discussed. Proposed mechanisms of ketamine’s action are not mutually exclusive and may act in a complementary fashion to exert the acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine’s antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                May 2023
                April 23 2023
                : 11
                : 5
                : 1248
                Article
                10.3390/biomedicines11051248
                37238920
                fb1d8dbd-90e9-4d8d-b9fe-d0a1446322dd
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article