185
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the role that ecology and geography play in speciation, we carried out a countrywide analysis of An. gambiae M and S habitat requirements, and that of their chromosomal variants, across Burkina Faso.

          Results

          Maps of relative abundance by geostatistical interpolators produced a distinct pattern of distribution: the M-form dominated in the northernmost arid zones, the S-form in the more humid southern regions. Maps of habitat suitability, quantified by Ecological Niche Factor Analysis based on 15 eco-geographical variables revealed less contrast among forms. M was peculiar as it occurred proportionally more in habitat of marginal quality. Measures of ecological niche breadth and overlap confirmed the mismatch between the fundamental and realized patterns of habitat occupation: forms segregated more than expected from the extent of divergence of their environmental envelope – a signature of niche expansion. Classification of chromosomal arm 2R karyotypes by multilocus genetic clustering identified two clusters loosely corresponding to molecular forms, with 'mismatches' representing admixed individuals due to shared ancestral polymorphism and/or residual hybridization. In multivariate ordination space, these karyotypes plotted in habitat of more marginal quality compared to non-admixed, 'typical', karyotypes. The distribution of 'typical' karyotypes along the main eco-climatic gradient followed a consistent pattern within and between forms, indicating an adaptive role of inversions at this geographical scale.

          Conclusion

          Ecological segregation between M and S is consistent with niche expansion into marginal habitats by chromosomal inversion variants during early lineage divergence; presumably, this process is promoted by inter-karyotype competition in the higher-quality core habitat. We propose that the appearance of favourable allelic combinations in other regions of suppressed recombination (e.g. pericentromeric portions defining speciation islands in An. gambiae) fosters development of reproductive isolation to protect linkage between separate chromosomal regions.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecology and the origin of species.

            The ecological hypothesis of speciation is that reproductive isolation evolves ultimately as a consequence of divergent natural selection on traits between environments. Ecological speciation is general and might occur in allopatry or sympatry, involve many agents of natural selection, and result from a combination of adaptive processes. The main difficulty of the ecological hypothesis has been the scarcity of examples from nature, but several potential cases have recently emerged. I review the mechanisms that give rise to new species by divergent selection, compare ecological speciation with its alternatives, summarize recent tests in nature, and highlight areas requiring research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the relationship between niche and distribution

                Bookmark

                Author and article information

                Journal
                BMC Ecol
                BMC Ecology
                BioMed Central
                1472-6785
                2009
                21 May 2009
                : 9
                : 16
                Affiliations
                [1 ]Institut de Recherche pour le Développement (IRD), UR016, and Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo-Dioulasso, Burkina Faso
                [2 ]Laboratoire de Lutte contre les Insectes Nuisibles (LIN), Institut de Recherche pour le Développement (IRD), UR016, 911 Av Agropolis, 34394 Cedex 5, Montpellier, France
                [3 ]Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208, Ouagadougou, Burkina Faso
                [4 ]Parasitology Unit, Dept. Public Health, University of Rome "La Sapienza", P le Aldo Moro 5, 00185, Rome, Italy
                [5 ]Institut International d'Ingénierie de l'Eau et de l'Environnement (2IE), 01 BP 594, Ouagadougou, Burkina Faso
                [6 ]Université de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso
                [7 ]Institut de Recherche pour le Développement (IRD), US140, Pôle Géomatique ESPACE-IRD, 5 rue du Carbone, 45072 Cedex 2, Orléans, France
                [8 ]Eck Institute for Global Health, Department of Biological Sciences, 317 Galvin Life Sciences Bldg., University of Notre Dame, Notre Dame, IN 46556-0369, USA
                [9 ]Institut de Recherche pour le Développement (IRD), UR016, and Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon
                [10 ]Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroon
                Article
                1472-6785-9-16
                10.1186/1472-6785-9-16
                2702294
                19460144
                fb42a4b9-c0bf-4f31-a223-fccdcdfb5360
                Copyright © 2009 Costantini et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 October 2008
                : 21 May 2009
                Categories
                Research Article

                Ecology
                Ecology

                Comments

                Comment on this article