74
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primordial germ cells (PGCs) are the embryonic progenitors of sperm and egg cells. Mammalian PGCs are thought to actively migrate from the yolk sac endoderm over long distances across the embryo to reach the somatic genital ridges. The general principles of mammalian PGC development were discovered in mice. In contrast, little is known about PGC development in primates due to extremely limited access to primate embryos. Here, we analyzed 12 well preserved marmoset monkey ( Callithrix jacchus) embryos covering the phase from PGC emergence in the endoderm to the formation of the sexually differentiated gonad (embryonic day (E) 50 to E95). We show using immunohistochemistry that the pluripotency factors OCT4A and NANOG specifically mark PGCs throughout the period studied. In contrast, SALL4 and LIN28 were first expressed ubiquitously and only later down-regulated in somatic tissues. We further show, for the first time, that PGCs are located in the endoderm in E50 embryos in close spatial proximity to the prospective genital ridge, making a long-range migration of PGCs dispensable. At E65, PGCs are already present in the primitive gonad, while significantly later embryonic stages still exhibit PGCs at their original endodermal site, revealing a wide spatio-temporal window of PGC distribution. Our findings challenge the ‘dogma’ of active long-range PGC migration from the endoderm to the gonads. We therefore favor an alternative model based primarily on passive translocation of PGCs from the mesenchyme that surrounds the gut to the prospective gonad through the intercalar expansion of mesenchymal tissue which contains the PGCs. In summary, we (i) show differential pluripotency factor expression during primate embryo development and (ii) provide a schematic model for embryonic PGC translocation.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.

          Oct4 is a mammalian POU transcription factor expressed by early embryo cells and germ cells. We report that the activity of Oct4 is essential for the identity of the pluripotential founder cell population in the mammalian embryo. Oct4-deficient embryos develop to the blastocyst stage, but the inner cell mass cells are not pluripotent. Instead, they are restricted to differentiation along the extraembryonic trophoblast lineage. Furthermore, in the absence of a true inner cell mass, trophoblast proliferation is not maintained in Oct4-/- embryos. Expansion of trophoblast precursors is restored, however, by an Oct4 target gene product, fibroblast growth factor-4. Therefore, Oct4 also determines paracrine growth factor signaling from stem cells to the trophectoderm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Derivation of pluripotent stem cells from cultured human primordial germ cells.

            Human pluripotent stem cells would be invaluable for in vitro studies of aspects of human embryogenesis. With the goal of establishing pluripotent stem cell lines, gonadal ridges and mesenteries containing primordial germ cells (PGCs, 5-9 weeks postfertilization) were cultured on mouse STO fibroblast feeder layers in the presence of human recombinant leukemia inhibitory factor, human recombinant basic fibroblast growth factor, and forskolin. Initially, single PGCs in culture were visualized by alkaline phosphatase activity staining. Over a period of 7-21 days, PGCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells termed embryonic stem and embryonic germ (EG) cells. Throughout the culture period most cells within the colonies continued to be alkaline phosphatase-positive and tested positive against a panel of five immunological markers (SSEA-1, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) that have been used routinely to characterize embryonic stem and EG cells. The cultured cells have been continuously passaged and found to be karyotypically normal and stable. Both XX and XY cell cultures have been obtained. Immunohistochemical analysis of embryoid bodies collected from these cultures revealed a wide variety of differentiated cell types, including derivatives of all three embryonic germ layers. Based on their origin and demonstrated properties, these human PGC-derived cultures meet the criteria for pluripotent stem cells and most closely resemble EG cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells.

              The totipotent stem cells of the pregastrulation mouse embryo which give rise to all embryonic somatic tissues and germ cells express Oct-4. The expression is downregulated during gastrulation and is thereafter only maintained in the germline lineage. Oct-4/lacZ transgenes were used to determine how this pattern of expression was achieved, and resulted in the identification of two separate regulatory elements. The distal element drives Oct-4 expression in preimplantation embryos, in migratory and postmigratory primordial germ cells but is inactive in cells of the epiblast. In cell lines this element is specifically active in embryonic stem and embryonic germ cells. The proximal element directs the epiblast-specific expression pattern, including downregulation during gastrulation; in cell lines its activity is restricted to epiblast-derived cells. Thus, Oct-4 expression in the germline is regulated separately from epiblast expression. This provides the first marker for the identification of totipotent cells in the embryo, and suggests that expression of Oct-4 in the totipotent cycle is dependent on a set of factors unique to the germline.
                Bookmark

                Author and article information

                Journal
                Mol Hum Reprod
                Mol. Hum. Reprod
                molehr
                molehr
                Molecular Human Reproduction
                Oxford University Press
                1360-9947
                1460-2407
                January 2015
                18 September 2014
                18 September 2014
                : 21
                : 1 , Special Issue: Mitochondria: their genome and their contribution to well-being and disease
                : 66-80
                Affiliations
                [1 ]Stem Cell Biology Unit, German Primate Center – Leibniz Institute for Primate Research , Kellnerweg 4, 37077 Göttingen, Germany
                [2 ]Department of Anatomy and Embryology, Center of Anatomy, University of Göttingen , Kreuzbergring 36, 37075 Göttingen, Germany
                Author notes
                [* ]Correspondence address. Stem Cell Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. Tel: +49-551-3851-132; Fax: +49-551–3851–431; E-mail: rbehr@ 123456dpz.eu
                Article
                gau088
                10.1093/molehr/gau088
                4275041
                25237007
                fb6fc4c4-5031-4d29-b2cc-c0db66b625ef
                © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 28 January 2014
                : 5 September 2014
                : 15 September 2014
                Categories
                Articles

                Obstetrics & Gynecology
                embryo,pluripotency factor,primordial germ cell,marmoset monkey
                Obstetrics & Gynecology
                embryo, pluripotency factor, primordial germ cell, marmoset monkey

                Comments

                Comment on this article