20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum coherence fluctuation relations

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate manipulations of pure quantum states under incoherent or strictly incoherent operations assisted by a coherence battery, that is, a storage device whose degree of coherence is allowed to fluctuate in the process. This leads to the derivation of fluctuation relations for quantum coherence, analogous to Jarzynski's and Crooks' relations for work in thermodynamics. Coherence is thus revealed as another instance of a physical resource, in addition to athermality and entanglement, for which a connection is established between the majorisation framework (regulating pure state transformations under suitable free operations) and the emergence of fluctuation theorems. Our study is hoped to provide further insight into the general structure of battery assisted quantum resource theories, and more specifically into the interplay between quantum coherence and quantum thermodynamics.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Robustness of coherence: An operational and observable measure of quantum coherence

          , , (2016)
          Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase-discrimination task.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Assisted distillation of quantum coherence

            , , (2016)
            We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules

              , , (2007)
              Superselection rules (SSRs) limit the mechanical and quantum processing resources represented by quantum states. However SSRs can be violated using reference systems to break the underlying symmetry. We show that there is a duality between the ability of a system to do mechanical work and to act as a reference system. Further, for a bipartite system in a globally symmetric pure state, we find a triality between the system's ability to do local mechanical work, its ability to do ``logical work'' due to its accessible entanglement, and its ability to act as a shared reference system.
                Bookmark

                Author and article information

                Journal
                16 February 2018
                Article
                1802.05919
                fb8b4673-bff0-4fca-b93c-2bc22340aa68

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                21 pages, 1 figure; comments are welcome
                quant-ph cond-mat.stat-mech math-ph math.MP

                Comments

                Comment on this article