23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Challenges in Modelling Hypoglycaemia-Associated Autonomic Failure: A Review of Human and Animal Studies

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recurrent insulin-induced hypoglycaemia is a major limitation to insulin treatment in diabetes patients leading to a condition called hypoglycaemia-associated autonomic failure (HAAF). HAAF is characterised by reduced sympathoadrenal response to subsequent hypoglycaemia thereby predisposing the patients to severe hypoglycaemia that can lead to coma or even death. Despite several attempts being made, the mechanism of HAAF is yet to be clearly established. In order for the mechanism of HAAF to be elucidated, establishing a human/animal model of the phenomenon is the foremost requirement. Several research groups have attempted to reproduce the phenomenon in diabetic and nondiabetic humans and rodents and reported variable results. The success of the phenomenon is marked by a significant reduction in plasma adrenaline response to subsequent hypoglycaemic episode relative to that of the antecedent hypoglycaemic episode. A number of factors such as the insulin dosage, route of administration, fasting conditions, blood sampling methods and analyses, depth, duration, and number of antecedent hypoglycaemic episodes can impact the successful reproduction of the phenomenon and thus have to be carefully considered while developing the protocol. In this review, we have outlined the protocols followed by different research groups to reproduce the phenomenon in diabetic and nondiabetic humans and rodents including our own observations in rats and discussed the factors that have to be given careful consideration in reproducing the phenomenon successfully.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoglycemia in diabetes.

          Iatrogenic hypoglycemia causes recurrent morbidity in most people with type 1 diabetes and many with type 2 diabetes, and it is sometimes fatal. The barrier of hypoglycemia generally precludes maintenance of euglycemia over a lifetime of diabetes and thus precludes full realization of euglycemia's long-term benefits. While the clinical presentation is often characteristic, particularly for the experienced individual with diabetes, the neurogenic and neuroglycopenic symptoms of hypoglycemia are nonspecific and relatively insensitive; therefore, many episodes are not recognized. Hypoglycemia can result from exogenous or endogenous insulin excess alone. However, iatrogenic hypoglycemia is typically the result of the interplay of absolute or relative insulin excess and compromised glucose counterregulation in type 1 and advanced type 2 diabetes. Decrements in insulin, increments in glucagon, and, absent the latter, increments in epinephrine stand high in the hierarchy of redundant glucose counterregulatory factors that normally prevent or rapidly correct hypoglycemia. In insulin-deficient diabetes (exogenous) insulin levels do not decrease as glucose levels fall, and the combination of deficient glucagon and epinephrine responses causes defective glucose counterregulation. Reduced sympathoadrenal responses cause hypoglycemia unawareness. The concept of hypoglycemia-associated autonomic failure in diabetes posits that recent antecedent hypoglycemia causes both defective glucose counterregulation and hypoglycemia unawareness. By shifting glycemic thresholds for the sympathoadrenal (including epinephrine) and the resulting neurogenic responses to lower plasma glucose concentrations, antecedent hypoglycemia leads to a vicious cycle of recurrent hypoglycemia and further impairment of glucose counterregulation. Thus, short-term avoidance of hypoglycemia reverses hypoglycemia unawareness in most affected patients. The clinical approach to minimizing hypoglycemia while improving glycemic control includes 1) addressing the issue, 2) applying the principles of aggressive glycemic therapy, including flexible and individualized drug regimens, and 3) considering the risk factors for iatrogenic hypoglycemia. The latter include factors that result in absolute or relative insulin excess: drug dose, timing, and type; patterns of food ingestion and exercise; interactions with alcohol and other drugs; and altered sensitivity to or clearance of insulin. They also include factors that are clinical surrogates of compromised glucose counterregulation: endogenous insulin deficiency; history of severe hypoglycemia, hypoglycemia unawareness, or both; and aggressive glycemic therapy per se, as evidenced by lower HbA(1c) levels, lower glycemic goals, or both. In a patient with hypoglycemia unawareness (which implies recurrent hypoglycemia) a 2- to 3-week period of scrupulous avoidance of hypoglycemia is advisable. Pending the prevention and cure of diabetes or the development of methods that provide glucose-regulated insulin replacement or secretion, we need to learn to replace insulin in a much more physiological fashion, to prevent, correct, or compensate for compromised glucose counterregulation, or both if we are to achieve near-euglycemia safely in most people with diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect.

            Despite excessive glucagon responses to infusion of arginine, plasma glucagon did not rise in six juvenile-type diabetics during severe insulin-induced hypoglycemia, whereas glucagon in the controls rose significantly. Thus in diabetics pancreatic alpha cells are insensitive to glucose even in the presence of large amounts of circulating insulin. An intrinsic defect common to both alpha and beta pancreatic cells-failure to recognize (or respond to) plasma glucose fluctuations-may be operative in juvenile diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes.

              The secretion of glucagon by pancreatic alpha-cells plays a critical role in the regulation of glycaemia. This hormone counteracts hypoglycaemia and opposes insulin actions by stimulating hepatic glucose synthesis and mobilization, thereby increasing blood glucose concentrations. During the last decade, knowledge of alpha-cell physiology has greatly improved, especially concerning molecular and cellular mechanisms. In this review, we have addressed recent findings on alpha-cell physiology and the regulation of ion channels, electrical activity, calcium signals and glucagon release. Our focus in this review has been the multiple control levels that modulate glucagon secretion from glucose and nutrients to paracrine and neural inputs. Additionally, we have described the glucagon actions on glycaemia and energy metabolism, and discussed their involvement in the pathophysiology of diabetes. Finally, some of the present approaches for diabetes therapy related to alpha-cell function are also discussed in this review. A better understanding of the alpha-cell physiology is necessary for an integral comprehension of the regulation of glucose homeostasis and the development of diabetes.
                Bookmark

                Author and article information

                Journal
                Int J Endocrinol
                Int J Endocrinol
                IJE
                International Journal of Endocrinology
                Hindawi Publishing Corporation
                1687-8337
                1687-8345
                2016
                23 October 2016
                : 2016
                : 9801640
                Affiliations
                School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
                Author notes

                Academic Editor: Michael Horowitz

                Author information
                http://orcid.org/0000-0002-8748-3660
                http://orcid.org/0000-0002-5793-6147
                Article
                10.1155/2016/9801640
                5097810
                27843452
                fbacf295-879d-4f27-90d3-c00f98126bf3
                Copyright © 2016 Manjula Senthilkumaran et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 April 2016
                : 1 September 2016
                : 18 September 2016
                Categories
                Review Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article