39
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation and Characterization of Cinnarizine Targeted Aural Transfersomal Gel for Vertigo Treatment: A Pharmacokinetic Study on Rabbits

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction and Aim

          Cinnarizine is indicated orally for treating vertigo associated with Ménière’s syndrome and has a local anesthetic effect as well. The present study aims to develop an aural Cinnarizine mucoadhesive transfersomal gel to overcome the first-pass metabolism.

          Methods

          Eighteen Cinnarizine transfersomes were prepared by the thin-film hydration technique using different types of phosphatidylcholine and edge activators in different ratios. Formulae were tested for their appearance, entrapment efficiency, and in-vitro drug release after eight hours. F1, F4, F7, F9, F10, and F12 were selected to be examined for particle size, polydispersity index, and zeta potential. According to the previous parameters, F1 and F10 were incorporated into gels using different polymers according to factorial design 23. The eight gels were tested for appearance, pH, mucoadhesion, spreadability, drug content, in-vitro drug release after eight hours, and rheology. The transfersomal gel F1A was subjected to FTIR analysis and in-vivo pharmacokinetic study.

          Results

          The transfersomal dispersion colors were ranging between the white and yellow. Their EE % ranged from 64.36±1.985% to 94.09±1.74%, and their in-vitro release percentages were between 61.82±1.92% and 95.92±1.18%. Also, the vesicles PS ranged from 212.3±30.05nm to 2150±35.35nm, DI from 0.238±0.134 to 1±0.00 and zeta potential from −57.5±2.54 to +4.73±1.57 mV. The transfersomal gels showed pseudoplastic behavior, pH range of 5.5 to 8, a mucoadhesive force of 169.188±1.26 to 321.212±6.94 (dyne/cm 2×10 2), spreadability of 40 ±7.03mm to 138 ±3.77mm, and in-vitro drug release of 81.63±1.128% to 97.78±0.102%. The IR spectra of the (drug-excipients) physical mixture revealed that there were no shifts of incompatibility. The in-vivo pharmacokinetic study illustrated that [AUC] 0–24 of F1A was significantly higher than that of tablets at (P< 0.05), equivalent to 703.563±26.470 and 494.256±9.621ɲg.hr/mL respectively.

          Conclusion

          The study revealed that Cinnarizine aural mucoadhesive targeted delivery provides an improved systemic bioavailability over the conventional oral route.

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Review ofIn VitroDrug Release Test Methods for Nano-Sized Dosage Forms

          This review summarizes the methods used to study real-time (37°C) drug release from nanoparticulate drug delivery systems and establish an IVIVC. Since no compendial standards exist, drug release is currently assessed using a variety of methods including sample and separate (SS), continuous flow (CF), dialysis membrane (DM) methods, and a combination thereof, as well as novel techniques like voltametry and turbidimetry. This review describes the principle of each method along with their advantages and disadvantages, including challenges with set-up and sampling. The SS method allows direct measurement of drug release with simple set-up requirements, but sampling is cumbersome. With the CF method, sampling is straightforward but the set-up is time consuming. Set-up as well as sampling is easier with the DM, but it may not be suitable for drugs that bind to the membrane. Novel methods offer the possibility of real-time drug release measurement but may be restricted to certain types of drugs. Of these methods, Level A IVIVCs have been obtained with dialysis, alone or in combination with the sample and separate technique. Future efforts should focus on developing mathematical models that describe drug release mechanisms as well as facilitate formulation development of nano-sized dosage forms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment.

            Ciprofloxacin is a synthetic fluoroquinolone antibiotic that has been used for systemic treatment of otitis media in adults. It was approved for topical treatment of otorrhea in children with tympanostomy tubes. The aim of this work was to enhance the local non-invasive delivery of ciprofloxacin to the middle ear across an intact tympanic membrane (TM) in an attempt to treat acute otitis media (AOM) ototopically. In order to achieve this goal, ciprofloxacin nano-transfersomal vesicles were prepared by thin film hydration (TFH) technique, using several edge activators (EAs) of varying hydrophilic-lipophilic balance (HLB) values. A full factorial design was employed for the optimization of formulation variables using Design-Expert(®) software. The optimal formulation was subjected to stability testing, ex-vivo permeation studies (through ear skin and TM of rabbits), and in-vivo evaluation. Results revealed that the optimal formulation (composed of phospholipid and sodium cholate as an EA at a molar ratio of 5:1) exhibited enhanced ex-vivo drug flux through ear skin and TM when compared with the commercial product (Ciprocin(®) drops). It demonstrated a greater extent of in-vivo drug deposition in the TM of albino rabbits relative to Ciprocin(®). Consequently, transfersomes could be promising for the non-invasive trans-tympanic delivery of ciprofloxacin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surfactant Effects on Lipid-Based Vesicles Properties.

              Understanding the effect of surfactant properties is critical when designing vesicular delivery systems. This review evaluates previous studies to explain the influence of surfactant properties on the behavior of lipid vesicular systems, specifically their size, charge, stability, entrapment efficiency, pharmacokinetics, and pharmacodynamics. Generally, the size of vesicles decreases by increasing the surfactant concentration, carbon chain length, the hydrophilicity of the surfactant head group, and the hydrophilic-lipophilic balance. Increasing surfactant concentration can also lead to an increase in charge, which in turn reduces vesicle aggregation and enhances the stability of the system. The vesicles' entrapment efficiency not only depends on the surfactant properties but also on the encapsulated drug. For example, the encapsulation of a lipophilic drug could be enhanced by using a surfactant with a low hydrophilic-lipophilic balance value. Moreover, the membrane permeability of vesicles depends on the surfactant's carbon chain length and transition temperature. In addition, surfactants have a clear influence on pharmacokinetics and pharmacodynamics such as sustaining drug release, enhancing the circulation time of vesicles, improving targeting and cellular uptake.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                19 August 2020
                2020
                : 15
                : 6211-6223
                Affiliations
                [1 ]Department of Industrial Pharmacy, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology , Cairo, Egypt
                [2 ]Department of Pharmaceutics, Faculty of Pharmacy, Cairo University , Cairo, Egypt
                Author notes
                Correspondence: Rehab AbdelmonemDepartment of Industrial Pharmacy, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology , Al-Motameyez District, 6th October City, Giza, EgyptTel +20 1222127127 Email drrahoba@yahoo.com
                Author information
                http://orcid.org/0000-0002-2389-2588
                http://orcid.org/0000-0002-7668-0263
                Article
                258764
                10.2147/IJN.S258764
                7450212
                32904111
                fc604852-8557-4713-9517-dedb43355ee4
                © 2020 Abdelmonem et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 18 April 2020
                : 08 July 2020
                Page count
                Figures: 6, Tables: 10, References: 45, Pages: 13
                Categories
                Original Research

                Molecular medicine
                targeted transfersomes,aural gel,cinnarizine
                Molecular medicine
                targeted transfersomes, aural gel, cinnarizine

                Comments

                Comment on this article