76
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax

      research-article
      1 , , 1
      AMB Express
      Springer
      Bioethanol, High solids loading, Xylose fermentation, SSCF, Enzymatic hydrolysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The impact of pH coupled to process design for the conversion of the energy crop Arundo donax to ethanol was assessed in the present study under industrially relevant solids loadings. Two main process strategies were investigated, i.e. the traditional simultaneous saccharification and co-fermentation (SSCF) and a HYBRID design, where a long high temperature enzymatic hydrolysis step was carried out prior to continued low temperature SSCF, keeping the same total reaction time. Since acetic acid was identified as the major inhibitor in the slurry, the scenarios were investigated under different fermentation pH in order to alleviate the inhibitory effect on, in particular, xylose conversion. The results show that, regardless of fermentation pH, a higher glucan conversion could be achieved with the HYBRID approach compared to SSCF. Furthermore, it was found that increasing the pH from 5.0 to 5.5 for the fermentation phase had a large positive effect on xylose consumption for both process designs, although the SSCF design was more favored. With the high sugar concentrations available at the start of fermentation during the HYBRID design, the ethanol yield was reduced in favor of cell growth and glycerol production. This finding was confirmed in shake flask fermentations where an increase in pH enhanced both glucose and xylose consumption, but also cell growth and cell yield with the overall effect being a reduced ethanol yield. In conclusion this resulted in similar overall ethanol yields at the different pH values for the HYBRID design, despite the improved xylose uptake, whereas a significant increase in overall ethanol yield was found with the SSCF design.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Towards industrial pentose-fermenting yeast strains.

          Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

            Background Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w). Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation) at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition and adsorption inhibition must be improved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks.

              The aim of the study was to evaluate, from a technical and economic standpoint, the enzymatic processes involved in the production of fuel ethanol from softwood. Two base case configurations, one based on simultaneous saccharification and fermentation (SSF) and one based on separate hydrolysis and fermentation (SHF), were evaluated and compared. The process conditions selected were based mainly on laboratory data, and the processes were simulated by use of Aspen plus. The capital costs were estimated using the Icarus Process Evaluator. The ethanol production costs for the SSF and SHF base cases were 4.81 and 5.32 SEK/L or 0.57 and 0.63 USD/L (1 USD = 8.5SEK), respectively. The main reason for SSF being lower was that the capital cost was lower and the overall ethanol yield was higher. A major drawback of the SSF process is the problem with recirculation of yeast following the SSF step. Major economic improvements in both SSF and SHF could be achieved by increasing the income from the solid fuel coproduct. This is done by lowering the energy consumption in the process through running the enzymatic hydrolysis or the SSF step at a higher substrate concentration and by recycling the process streams. Running SSF with use of 8% rather than 5% nonsoluble solid material would result in a 19% decrease in production cost. If after distillation 60% of the stillage stream was recycled back to the SSF step, the production cost would be reduced by 14%. The cumulative effect of these various improvements was found to result in a production cost of 3.58 SEK/L (0.42 USD/L) for the SSF process.
                Bookmark

                Author and article information

                Contributors
                Journal
                AMB Express
                AMB Express
                AMB Express
                Springer
                2191-0855
                2014
                1 May 2014
                : 4
                : 41
                Affiliations
                [1 ]Department of Chemical Engineering, Lund University, Lund, SE-221 00, Sweden
                Article
                s13568-014-0041-z
                10.1186/s13568-014-0041-z
                4052779
                24949274
                fca8b82d-8279-4ea5-92dd-34eea5e92688
                Copyright © 2014 Palmqvist and Lidén; licensee Springer

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 14 February 2014
                : 1 April 2014
                Categories
                Research Article

                Biotechnology
                bioethanol,high solids loading,xylose fermentation,sscf,enzymatic hydrolysis
                Biotechnology
                bioethanol, high solids loading, xylose fermentation, sscf, enzymatic hydrolysis

                Comments

                Comment on this article