38
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT In this present research, we assessed the performance of band algorithms in estimating chlorophyll-a (Chl-a) concentration based on bands of two new sensors: Operational Land Imager onboard Landsat-8 satellite (OLI/Landsat-8), and MultiSpectral Instrument onboard Sentinel-2A (MSI/Sentinel-2A). Band combinations designed for Thematic Mapper onboard Landsat-5 satellite (TM/Landsat-5) and MEdium Resolution Imaging Spectrometer onboard Envisat platform (MERIS/Envisat) were adapted for OLI/Landsat-8 and MSI/Sentinel-2A bands. Algorithms were calibrated using in situ measurements collected in three field campaigns carried out in different seasons. The study area was the Barra Bonita hydroelectric reservoir (BBHR), a highly productive aquatic system. With exception of the three-band algorithm, the algorithms were spectrally few affected by sensors changes. On the other hands, algorithm performance has been hampered by the bio-optical difference in the reservoir sections, drought in 2014 and pigment packaging.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.

          Leaf chlorophyll content provides valuable information about physiological status of plants. Reflectance measurement makes it possible to quickly and non-destructively assess, in situ, the chlorophyll content in leaves. Our objective was to investigate the spectral behavior of the relationship between reflectance and chlorophyll content and to develop a technique for non-destructive chlorophyll estimation in leaves with a wide range of pigment content and composition using reflectance in a few broad spectral bands. Spectral reflectance of maple, chestnut, wild vine and beech leaves in a wide range of pigment content and composition was investigated. It was shown that reciprocal reflectance (R lambda)-1 in the spectral range lambda from 520 to 550 nm and 695 to 705 nm related closely to the total chlorophyll content in leaves of all species. Subtraction of near infra-red reciprocal reflectance, (RNIR)-1, from (R lambda)-1 made index [(R lambda)(-1)-(RNIR)-1] linearly proportional to the total chlorophyll content in spectral ranges lambda from 525 to 555 nm and from 695 to 725 nm with coefficient of determination r2 > 0.94. To adjust for differences in leaf structure, the product of the latter index and NIR reflectance [(R lambda)(-1)-(RNIR)-1]*(RNIR) was used; this further increased the accuracy of the chlorophyll estimation in the range lambda from 520 to 585 nm and from 695 to 740 nm. Two independent data sets were used to validate the developed algorithms. The root mean square error of the chlorophyll prediction did not exceed 50 mumol/m2 in leaves with total chlorophyll ranged from 1 to 830 mumol/m2.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of the remote-sensing reflectance from above-surface measurements.

              The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                aabc
                Anais da Academia Brasileira de Ciências
                An. Acad. Bras. Ciênc.
                Academia Brasileira de Ciências (Rio de Janeiro, RJ, Brazil )
                0001-3765
                1678-2690
                August 2017
                : 90
                : 2 suppl 1
                : 1987-2000
                Affiliations
                [1] Presidente Prudente orgnameUniversidade Estadual Paulista orgdiv1Department of Cartography Brazil
                [2] São José dos Campos orgnameUniversidade Estadual Paulista orgdiv1Department of Environmental Engineering Brazil
                Article
                S0001-37652018000501987
                10.1590/0001-3765201720170125
                fce2a706-a277-4b0a-87fd-d5aa7ef6de40

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 17 February 2017
                : 29 May 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 38, Pages: 14
                Product

                SciELO Brazil


                satellite imagery,algal bloom,inland water color,spectral index,water quality

                Comments

                Comment on this article