34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protective effect of edaravone on blood-brain barrier (BBB) in experimental cerebral infarction rats was investigated. SD rats were prepared as the permanent middle cerebral artery occlusion model and randomly divided into 4 groups: cerebral infarction model group, edaravone low, medium and high dose groups. Healthy rats only for operation and no filament were selected as the sham operation control group. Rats in the cerebral infarction model group and the control group were given normal saline, and those in the edaravone low, medium and high dose groups were given edaravone 10, 15 and 20 mg/kg, respectively. The survival status, the body weight and neurological function score before and after treatment, the brain water content and the permeability of the blood-brain barrier after treatment were measured. The expression levels of NFE2-related factor 2 (NRF2) and hemeoxygenase 1 (HO-1) in rat brain tissue were detected by western blotting. Levels of peripheral blood malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were detected by ELISA. The state of the rats in three edaravone groups was improved compared with that of the cerebral infarction group. Compared with the cerebral infarction model group, the body weight was significantly increased after treatment and the neurological function score, brain tissue water content and BBB permeability were significantly decreased in three edaravone groups (P<0.05). Compared with the model group of cerebral infarction, the expression of NRF-2 and HO-1 in the brain of the three edaravone groups was significantly higher (P<0.05). Compared with the model group of cerebral infarction, the expression of MDA and GSH in the three edaravone groups was significantly decreased, GSH and SOD was increased (P<0.05), in a dose-dependent manner. Edaravone might play a protective role in the BBB by activating the NRF-2/HO-1 signaling pathway.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat.

          Physical activity impacts functional recovery following stroke in humans, however its effects in experimental animals submitted to chronic cerebral hypoperfusion have not been investigated. The aim of this study was to evaluate the therapeutic potential of exercise, as assessed by cognitive activity in the Morris water maze and the brain oxidative status, through measurement of macromolecules damage, TBARS levels and total cellular thiols, as well as antioxidant enzymes in hippocampus, striatum and cerebral cortex. Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested 3 months after the ischemic event. The effects of three different exercise protocols were examined: pre-ischemia, post-ischemia and pre+post-ischemia. Physical exercise consisted of sessions of 20-min, 3 times per week during 12 weeks (moderate intensity). Rats were submitted to cognitive assessment, in both reference and working spatial memory and after the last testing session were sacrificed to have oxidative stress parameters determined. Hypoperfusion caused a significant cognitive deficit in both spatial water maze tasks and this effect was reversed in rats receiving exercise protocol post and pre+post the ischemic event. Moreover, forced regular treadmill exercise regulated oxidative damage and antioxidant enzyme activity in the hippocampus. These results suggest that physical exercise protects against cognitive and biochemical impairments caused by chronic cerebral hypoperfusion. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway

            Objectives The potential protective effects and mechanisms of edaravone have not been well elucidated in vascular dementia (VaD) induced by chronic cerebral hypoperfusion (CCH). The aim of this study was to investigate whether edaravone could improve cognitive damage in rats induced by CCH, and whether the effects of edaravone were associated with ERK/Nrf2/HO-1 signaling pathway. Methods CCH was induced by bilateral common carotid arteries occlusion (BCCAO). Sprague-Dawley (SD) rats were randomly divided into four groups: sham (sham-operated) group, vehicle (BCCAO + normal saline) group, edaravone3.0 group and edaravone6.0 group. The edaravone3.0 and edaravone6.0 group rats were provided 3.0 mg/kg and 6.0 mg/kg of edaravone, respectively, intraperitoneal (i.p.) injection twice daily following the first day after BCCAO. In this experiment, the spatial learning and memory were assessed using the Morris water maze. The malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the hippocampus were measured biochemically. And, the levels of total ERK1/2 (t-ERK1/2), Phospho-ERK1/2 (p-ERK1/2), total Nrf2 (t-Nrf2), nuclear Nrf2 (n-Nrf2), and HO-1 were assessed by western blot. Results The results showed that the treatment with edaravone significantly improved CCH-induced cognitive damage, and boosted endogenous antioxidants SOD activity and HO-1 level, decreased MDA contents in the hippocampus by activating Nrf2 signaling pathway which was related to ERK1/2. We also found that the neuronal morphology of the hippocampal CA1 area significantly improved and the number of Nrf2 positive cells markedly increased in the edaravone treatment groups. Conclusion Our results demonstrated a neuroprotective effect of edaravone on hippocampus against oxidative stress and cognitive deficit induced by CCH. The mechanism may be related to the enhancement of antioxidant defense system by activating ERK/Nrf2/HO-1 signaling pathway.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cryptotanshinone Attenuates Oxidative Stress and Inflammation through the Regulation of Nrf-2 and NF-κB in Mice with Unilateral Ureteral Obstruction

                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                October 2019
                06 August 2019
                06 August 2019
                : 18
                : 4
                : 2437-2442
                Affiliations
                Fourth Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
                Author notes
                Correspondence to: Dr Jing Liu, Fourth Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Qiqihar, Heilongjiang 161000, P.R. China, E-mail: liujing830@ 123456126.com
                Article
                ETM-0-0-7859
                10.3892/etm.2019.7859
                6755265
                fcfd64da-23df-4539-a94a-209c4b7ebbac
                Copyright: © Liu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 24 January 2019
                : 21 May 2019
                Categories
                Articles

                Medicine
                edaravone,cerebral infarction,nfe2-related factor 2/hemeoxygenase 1 signaling pathway,blood-brain barrier

                Comments

                Comment on this article