3
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationship of body mass index and visceral fat area combination with arterial stiffness and cardiovascular risk in cardiovascular disease-free people: NHANES (2011–2018)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Obesity and arterial stiffness are strongly associated with cardiovascular disease; however, their relationship remains controversial.

          Methods

          Body mass index was measured using anthropometric evaluation, and visceral fat area was calculated using an absorptiometry scan.

          Results

          The data of 5309 participants were collected from NHANES (National Health and Nutrition Examination Survey) (2011–2018). Based on the normal-weight normal visceral fat group that was considered as a reference, ePWV increased in all other groups, with the obese grade 2 visceral obesity group increasing the most by 26.35 cm/s (95% CI: 13.52, 39.18, P < 0.001), followed by normal-weight visceral obesity group 24.43 cm/s (95% CI: 1.88, 46.98, P = 0.035), which was even higher than obese grade 1 visceral obesity ( β: 21.16, 95% CI: 9.24, 33.07, P = 0.001), obese grade 2 normal visceral fat group ( β: 13.8; 95% CI: 0.10, 27.5, P = 0.048) and overweight visceral obesity group ( β: 10.23; 95% CI: 1.89, 18.57, P = 0.018). For the 10-year cardiovascular risk, the obese grade 2 visceral obesity group had a 9.56-fold increase in compared with the control (OR: 10.56, 95% CI: 4.06, 27.51, P < 0.0001). Normal-weight visceral obesity, obese grade 1 visceral obesity, and overweight visceral obesity groups increased by 8.03-fold (OR: 9.03, 95% CI: 2.66, 30.69; P < 0.001), 7.91-fold (OR: 8.91, 95% CI: 3.82, 20.79, P < 0.001), and 7.28-fold (OR: 8.28, 95% CI: 3.19, 21.46, P < 0.001). The risk was lower in the normal visceral fat group. Except for the obese grade 2 normal visceral fat group, there was no significant difference in other groups.

          Conclusions

          Normal-weight visceral obesity was associated with higher arterial stiffness and 10-year cardiovascular risk.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          General cardiovascular risk profile for use in primary care: the Framingham Heart Study.

          Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors. A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022

            (2022)
            The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes the ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism.

              Obesity is becoming a global epidemic in both children and adults. It is associated with numerous comorbidities such as cardiovascular diseases (CVD), type 2 diabetes, hypertension, certain cancers, and sleep apnea/sleep-disordered breathing. In fact, obesity is an independent risk factor for CVD, and CVD risks have also been documented in obese children. Obesity is associated with an increased risk of morbidity and mortality as well as reduced life expectancy. Health service use and medical costs associated with obesity and related diseases have risen dramatically and are expected to continue to rise. Besides an altered metabolic profile, a variety of adaptations/alterations in cardiac structure and function occur in the individual as adipose tissue accumulates in excess amounts, even in the absence of comorbidities. Hence, obesity may affect the heart through its influence on known risk factors such as dyslipidemia, hypertension, glucose intolerance, inflammatory markers, obstructive sleep apnea/hypoventilation, and the prothrombotic state, in addition to as-yet-unrecognized mechanisms. On the whole, overweight and obesity predispose to or are associated with numerous cardiac complications such as coronary heart disease, heart failure, and sudden death because of their impact on the cardiovascular system. The pathophysiology of these entities that are linked to obesity will be discussed. However, the cardiovascular clinical evaluation of obese patients may be limited because of the morphology of the individual. In this statement, we review the available evidence of the impact of obesity on CVD with emphasis on the evaluation of cardiac structure and function in obese patients and the effect of weight loss on the cardiovascular system.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                05 September 2023
                05 September 2023
                01 November 2023
                : 12
                : 11
                : e230291
                Affiliations
                [1 ]Department of Cardiology , The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
                [2 ]The First Affiliated Hospital , Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
                [3 ]The Second People’s Hospital , Luqiao, Taizhou, Zhejiang, China
                Author notes
                Correspondence should be addressed to Y Huang: zise@ 123456zju.edu.cn
                Author information
                http://orcid.org/0000-0001-8126-2798
                Article
                EC-23-0291
                10.1530/EC-23-0291
                10563637
                37668220
                fd149149-ef5d-4639-a58c-313f18cd718c
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 18 July 2023
                : 05 September 2023
                Categories
                Research

                estimated pulse wave velocity,body mass index,visceral fat area,arterial stiffness,obesity

                Comments

                Comment on this article