13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment.

          The organization of cellular niches is known to have a key role in regulating normal stem cell differentiation and regeneration, but relatively little is known about the architecture of microenvironments that support malignant metastasis. Using dynamic in vivo confocal imaging, here we show that murine bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant stromal-cell-derived factor 1 (SDF-1) in discrete, discontinuous areas that influence the homing of a variety of tumour cell lines. Disruption of the interactions between SDF-1 and its receptor CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to these vessels. Further studies revealed that circulating leukaemic cells can engraft around these vessels, suggesting that this molecularly distinct vasculature demarcates a microenvironment for early metastatic tumour spread in bone marrow. Finally, purified haematopoietic stem/progenitor cells and lymphocytes also localize to the same microdomains, indicating that this vasculature might also function in benign states to demarcate specific portals for the entry of cells into the marrow space. Specialized vascular structures therefore appear to delineate a microenvironment with unique physiology that can be exploited by circulating malignant cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species.

            We previously described a method for isolating murine hematopoietic stem cells capable of reconstituting lethally irradiated recipients, which depends solely on dual-wavelength flow cytometric analysis of murine bone marrow cells stained with the fluorescent DNA-binding dye Hoechst 33342. This method, which appears to rely on the differential ability of stem cells to efflux the Hoechst dye, defines an extremely small and homogeneous population of cells (termed SP cells). We show here that dual-wavelength analysis of Hoechst dye-stained human, rhesus and miniature swine bone marrow cells reveals a small, distinct population of cells that efflux the dye in a manner identical to murine SP cells. Like the murine SP cells, both human and rhesus SP cells are primarily CD34-negative and lineage marker-negative. In vitro culture studies demonstrated that rhesus SP cells are highly enriched for long-term culture-initiating cells (LTC-ICs), an indicator of primitive hematopoietic cells, and have the capacity for differentiation into T cells. Although rhesus SP cells do not initially possess any hematopoietic colony-forming capability, they acquire the ability to form colonies after long-term culture on bone marrow stroma, coincident with their conversion to a CD34-positive phenotype. These studies suggest the existence of a hitherto unrecognized population of hematopoietic stem cells that lack the CD34 surface marker classically associated with primitive hematopoietic cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic targeting of acute myeloid leukemia stem cells.

              For more than 50 years, investigators have considered a malignant stem cell as the potential origin of and a key therapeutic target for acute myeloid leukemia (AML) and other forms of cancer.1-4The nature and existence of tumor-initiating cells for leukemia and other malignancies have long been the subject of intense and rigorous study; indeed, the promise of the potential to eradicate such cells is clear. However, until recently, deficiencies in our understanding of the nature of these cell populations, coupled with a limited ability to therapeutically exploit their weaknesses, have been limiting factors in realizing the goal of targeting leukemic stem cells (LSCs). Exciting new insights into the fundamental underpinnings of LSCs are now being made in an era in which drug development pipelines offer the potential to specifically target pathways of significance. Therefore, the focus in this new era, characterized by the confluence of understanding LSCs and the ability to target them, is shifting from "if it can be done" to "how it will be done." Moving from a theoretical stage to this hopeful era of possibilities, new challenges expectedly arise, and our focus now must shift to determining the best strategy by which to target LSCs, with their well-documented heterogeneity and readily evident intra- and interpatient variability. The purpose of this review is therefore both to summarize the key scientific findings pertinent to AML LSC targeting and to consider methods of clinical evaluation that will be most effective for identifying successful LSC-directed therapies.
                Bookmark

                Author and article information

                Journal
                Blood Advances
                Blood Adv
                American Society of Hematology
                2473-9529
                2473-9537
                December 26 2017
                December 26 2017
                : 1
                : 27
                : 2799-2816
                Article
                10.1182/bloodadvances.2017004317
                29296932
                fd1beb07-c446-4de5-8375-6a8062cff5f8
                © 2017
                History

                Comments

                Comment on this article