25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Principles of Buoyancy in Marine Fish Eggs and Their Vertical Distributions across the World Oceans

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses.

          P H Yancey (2005)
          Organic osmolytes are small solutes used by cells of numerous water-stressed organisms and tissues to maintain cell volume. Similar compounds are accumulated by some organisms in anhydrobiotic, thermal and possibly pressure stresses. These solutes are amino acids and derivatives, polyols and sugars, methylamines, methylsulfonium compounds and urea. Except for urea, they are often called ;compatible solutes', a term indicating lack of perturbing effects on cellular macromolecules and implying interchangeability. However, these features may not always exist, for three reasons. First, some of these solutes may have unique protective metabolic roles, such as acting as antioxidants (e.g. polyols, taurine, hypotaurine), providing redox balance (e.g. glycerol) and detoxifying sulfide (hypotaurine in animals at hydrothermal vents and seeps). Second, some of these solutes stabilize macromolecules and counteract perturbants in non-interchangeable ways. Methylamines [e.g. trimethylamine N-oxide (TMAO)] can enhance protein folding and ligand binding and counteract perturbations by urea (e.g. in elasmobranchs and mammalian kidney), inorganic ions, and hydrostatic pressure in deep-sea animals. Trehalose and proline in overwintering insects stabilize membranes at subzero temperatures. Trehalose in insects and yeast, and anionic polyols in microorganisms around hydrothermal vents, can protect proteins from denaturation by high temperatures. Third, stabilizing solutes appear to be used in nature only to counteract perturbants of macromolecules, perhaps because stabilization is detrimental in the absence of perturbation. Some of these solutes have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis. However, caution is warranted if high levels cause overstabilization of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atlantic herring: stock discreteness and abundance.

            The number of genetically distinct herring stocks is determined by the number of distinct, geographically stable larval retention areas. Spawning sites in these areas may be highly localized or dispersed. Absolute population size mostly depends on the retention area available to the density-dependent larval-postlarval stage. Although the extreme seasonal range of spawning time shown by Atlantic herring is not fully accounted for by a new hypothesis, current theory is not supported by the hypothesis or by empirical data. The management implications are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR.

              The temperature-dependence of a large number of NMR parameters describing hydrogen bond properties in the protein ubiquitin was followed over a range from 5 to 65 degrees C. The parameters comprise hydrogen bond (H-bond) scalar couplings, h3JNC', chemical shifts, amide proton exchange rates, 15N relaxation parameters as well as covalent 1JNC' and 1JNH couplings. A global weakening of the h3JNC' coupling with increasing temperature is accompanied by a global upfield shift of the amide protons and a decrease of the sequential 1JNC' couplings. If interpreted as a linear increase of the N...O distance, the change in h3JNC' corresponds to an average linear thermal expansion coefficient for the NH-->O hydrogen bonds of 1.7 x 10(-4)/K, which is in good agreement with overall volume expansion coefficients observed for proteins. A residue-specific analysis reveals that not all hydrogen bonds are affected to the same extent by the thermal expansion. The end of beta-sheet beta1/beta5 at hydrogen bond E64-->Q2 appears as the most thermolabile, whereas the adjacent hydrogen bond I3-->L15 connecting beta-strands beta1 and beta2 is even stabilized slightly at higher temperatures. Additional evidence for the stabilization of the beta1/beta2 beta-hairpin at higher temperatures is found in reduced hydrogen exchange rates for strand end residue V17. This reduction corresponds to a stabilizing change in free energy of 9.7 kJ/mol for the beta1/beta2 hairpin. The result can be linked to the finding that the beta1/beta2 hairpin behaves as an autonomously folding unit in the A-state of ubiquitin under changed solvent conditions. For several amide groups the temperature-dependencies of the amide exchange rates and H-bond scalar couplings are uncorrelated. Therefore, amide exchange rates are not a sole function of the hydrogen bond "strength" as given by the electronic overlap of donors and acceptors, but are clearly dependent on other blocking mechanisms. Copyright 2002 Elsevier Science Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                14 October 2015
                2015
                : 10
                : 10
                : e0138821
                Affiliations
                [001]Institute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
                National Oceanic and Atmospheric Administration/National Marine Fisheries Service/Southwest Fisheries Science Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SS. Performed the experiments: SS TK. Analyzed the data: SS TK. Contributed reagents/materials/analysis tools: SS TK. Wrote the paper: SS TK.

                [¤]

                Current address: National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America

                Article
                PONE-D-15-13455
                10.1371/journal.pone.0138821
                4605736
                26465149
                fd57700f-316e-4885-b5ee-78889c0a04cd
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 27 March 2015
                : 3 September 2015
                Page count
                Figures: 5, Tables: 2, Pages: 23
                Funding
                This work was supported by the Research Council of Norway ( http://www.forskningsradet.no/en/Home_page/1177315753906): SS and Statoil ( http://www.statoil.com/en/Pages/default.aspx): SS TK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All data applied in this paper is taken from publications cited in the paper and listed in the references.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article