4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methyltransferase-like 3 aggravates endoplasmic reticulum stress in preeclampsia by targeting TMBIM6 in YTHDF2-dependent manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          With the increasing morbidity and mortality of preeclampsia (PE), it has posed a huge challenge to public health. Previous studies have reported endoplasmic reticulum (ER) stress could contribute to trophoblastic dysfunction which was associated with the N 6-methyladenosine (m 6A) modification by methyltransferase-like 3 (METTL3), resulting in PE. However, little was known about the relationship between METTL3 and ER stress in PE. Thus, in vitro and in vivo studies were performed to clarify the mechanism about how METTL3 affects the trophoblasts under ER stress in PE and to explore a therapeutic approach for PE.

          Methods

          An ER stress model in HTR-8/SVneo cells and a preeclamptic rat model were used to study the mechanism and explore a therapeutic approach for PE. Western blot, immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and methylated RNA immunoprecipitation (MeRIP)-qPCR were performed to detect the protein, RNA, and methylated transmembrane BAX inhibitor motif containing 6 (TMBIM6) expression levels. The m 6A colorimetric and mRNA stability assays were used to measure the m 6A levels and TMBIM6 stability, respectively. Short hairpin RNAs (shRNAs) were used to knockdown METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Flow cytometry and Transwell assays were performed to evaluate the apoptosis and invasion abilities of trophoblasts.

          Results

          Upregulated METTL3 and m 6A levels and downregulated TMBIM6 levels were observed in preeclamptic placentas under ER stress. The ER stress model was successfully constructed, and knockdown of METTL3 had a beneficial effect on HTR-8/SVneo cells under ER stress as it decreased the levels of methylated TMBIM6 mRNA. Moreover, overexpression of TMBIM6 was beneficial to HTR-8/SVneo cells under ER stress as it could neutralize the harmful effects of METTL3 overexpression. Similar to the knockdown of METTL3, downregulation of YTHDF2 expression resulted in the increased expression and mRNA stability of TMBIM6. Finally, improved systemic symptoms as well as protected placentas and fetuses were demonstrated in vivo.

          Conclusions

          METTL3/YTHDF2/TMBIM6 axis exerts a significant role in trophoblast dysfunction resulting in PE while inhibiting METTL3 may provide a novel therapeutic approach for PE.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s10020-023-00604-x.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          m6A-dependent regulation of messenger RNA stability

          N6 -methyladenosine (m6A) is the most prevalent internal (non-cap) modification present in the messenger RNA (mRNA) of all higher eukaryotes 1,2 . Although essential to cell viability and development 3–5 , the exact role of m6A modification remains to be determined. The recent discovery of two m6A demethylases in mammalian cells highlighted the importance of m6A in basic biological functions and disease 6–8 . Here we show that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m6A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies 9 . The C-terminal domain of YTHDF2 selectively binds to m6A-containing mRNA whereas the N-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m6A modification is recognized by selective-binding proteins to affect the translation status and lifetime of mRNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preeclampsia

            Hypertensive disorders of pregnancy-chronic hypertension, gestational hypertension, and preeclampsia-are uniquely challenging as the pathology and its therapeutic management simultaneously affect mother and fetus, sometimes putting their well-being at odds with each other. Preeclampsia, in particular, is one of the most feared complications of pregnancy. Often presenting as new-onset hypertension and proteinuria during the third trimester, preeclampsia can progress rapidly to serious complications, including death of both mother and fetus. While the cause of preeclampsia is still debated, clinical and pathological studies suggest that the placenta is central to the pathogenesis of this syndrome. In this review, we will discuss the current evidence for the role of abnormal placentation and the role of placental factors such as the antiangiogenic factor, sFLT1 (soluble fms-like tyrosine kinase 1) in the pathogenesis of the maternal syndrome of preeclampsia. We will discuss angiogenic biomarker assays for disease-risk stratification and for the development of therapeutic strategies targeting the angiogenic pathway. Finally, we will review the substantial long-term cardiovascular and metabolic risks to mothers and children associated with gestational hypertensive disorders, in particular, preterm preeclampsia, and the need for an increased focus on interventional studies during the asymptomatic phase to delay the onset of cardiovascular disease in women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pre-eclampsia.

              Pre-eclampsia affects 3-5% of pregnancies and is traditionally diagnosed by the combined presentation of high blood pressure and proteinuria. New definitions also include maternal organ dysfunction, such as renal insufficiency, liver involvement, neurological or haematological complications, uteroplacental dysfunction, or fetal growth restriction. When left untreated, pre-eclampsia can be lethal, and in low-resource settings, this disorder is one of the main causes of maternal and child mortality. In the absence of curative treatment, the management of pre-eclampsia involves stabilisation of the mother and fetus, followed by delivery at an optimal time. Although algorithms to predict pre-eclampsia are promising, they have yet to become validated. Simple preventive measures, such as low-dose aspirin, calcium, and diet and lifestyle interventions, show potential but small benefit. Because pre-eclampsia predisposes mothers to cardiovascular disease later in life, pregnancy is also a window for future health. A collaborative approach to discovery and assessment of the available treatments will hasten our understanding of pre-eclampsia and is an effort much needed by the women and babies affected by its complications.
                Bookmark

                Author and article information

                Contributors
                15175501842@163.com
                xiehesummer@hust.edu.cn
                1042681949@qq.com
                1278414814@qq.com
                zhengfanghui2020@163.com
                851929937@qq.com
                ghde915@126.com
                drjinzhishan@qq.com
                woody_91@163.com
                2011xh0829@hust.edu.cn
                taohui@hust.edu.cn
                zhaoyin@hust.edu.cn
                liuweifang@hust.edu.cn
                xiehezouli@hust.edu.cn
                Journal
                Mol Med
                Mol Med
                Molecular Medicine
                BioMed Central (London )
                1076-1551
                1528-3658
                6 February 2023
                6 February 2023
                2023
                : 29
                : 19
                Affiliations
                GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, , Huazhong University of Science and Technology, ; Wuhan, 430022 China
                Author information
                http://orcid.org/0000-0002-3822-8823
                http://orcid.org/0000-0003-4795-2343
                Article
                604
                10.1186/s10020-023-00604-x
                9901113
                36747144
                fdde1e66-8d70-4706-baad-2e4860514777
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 August 2022
                : 6 January 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82001584
                Award ID: 82101788
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2023

                preeclampsia,m6a methylation,endoplasmic reticulum stress,mettl3,ythdf2,tmbim6

                Comments

                Comment on this article