9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relation of Adiponectin to Glucose Tolerance Status, Adiposity, and Cardiovascular Risk Factor Load

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective. Adiponectin has anti-atherogenic and anti-inflammatory properties. We investigated the influence of adiponectin on glucose tolerance status, adiposity and cardiovascular risk factors (CVRFs). Design and Patients. Study consisted of 107 subjects: 55 with normal glucose tolerance (NGT) and 52 with impaired glucose regulation (IGR) who were divided into two groups: 24 subjects with impaired fasting glucose (IFG Group) and 28 patients with type 2 diabetes mellitus (DM Group). In additional analysis, study participants were divided into two groups, according to CVRFs: low and high risk. Measurements: Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Measurements. Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Results. Adiponectin was significantly higher in NGT group than in IFG ( P = 0.003) and DM ( P = 0.01) groups. Adiponectin was significantly, positively associated with HDL and inversely associated with glucose, HbA1c, ALT, AST, TG, HOMA-IR. Patients with higher CVRFs load have lesser adiponectin compared to patients with low cardiovascular risk P < 0.0001). Adiponectin was inversely associated with the number of risk factors ( r = −0.430, P = 0.0001). Conclusions. Circulating adiponectin was significantly lower in subjects with different degree of IGR compared to subjects with normal glucose homeostasis. Adiponectin was significantly lower in high risk group than low risk group and decreased concurrently with increased number of CVRFs.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.

          Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)-matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6+/-0.4 versus 7.9+/-0.5 microg/mL in men, 7.6+/-0.7 versus 11.7+/-1.0 microg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0+/-0.4 versus 6.6+/-0.4 microg/mL, P<0.001 in men; 6.3+/-0.8 versus 7.6+/-0. 7 microg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fasting plasma insulin (r=-0.18, P<0.01) and glucose (r=-0.26, P<0.001) levels. In multivariate analysis, plasma insulin did not independently affect the plasma adiponectin levels. BMI, serum triglyceride concentration, and the presence of diabetes or CAD remained significantly related to plasma adiponectin concentrations. Weight reduction significantly elevated plasma adiponectin levels in the diabetic subjects as well as the nondiabetic subjects. These results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma adiponectin levels and risk of myocardial infarction in men.

            Adiponectin, a recently discovered adipocyte-derived peptide, is involved in the regulation of insulin sensitivity and lipid oxidation and, purportedly, in the development of atherosclerosis and coronary heart disease in humans. To assess prospectively whether plasma adiponectin concentrations are associated with risk of myocardial infarction (MI). Nested case-control study among 18 225 male participants of the Health Professionals Follow-up Study aged 40 to 75 years who were free of diagnosed cardiovascular disease at the time of blood draw (1993-1995). During 6 years of follow-up through January 31, 2000, 266 men subsequently developed nonfatal MI or fatal coronary heart disease. Using risk set sampling, controls were selected in a 2:1 ratio matched for age, date of blood draw, and smoking status (n = 532). Incidence of nonfatal MI and fatal coronary heart disease by adiponectin level. After adjustment for matched variables, participants in the highest compared with the lowest quintile of adiponectin levels had a significantly decreased risk of MI (relative risk [RR], 0.39; 95% confidence interval [CI], 0.23-0.64; P for trend <.001). Additional adjustment for family history of MI, body mass index, alcohol consumption, physical activity, and history of diabetes and hypertension did not substantively affect this relationship (RR, 0.41; 95% CI, 0.24-0.70; P for trend <.001). Further adjustment for hemoglobin A1c or C-reactive protein levels also had little impact, but additional adjustment for low- and high-density lipoprotein cholesterol levels modestly attenuated this association (RR, 0.56; 95% CI, 0.32-0.99; P for trend =.02). High plasma adiponectin concentrations are associated with lower risk of MI in men. This relationship can be only partly explained by differences in blood lipids and is independent of inflammation and glycemic status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.

              We investigated the functions of adiponectin, an adipocyte-specific secretory protein and a new member of the family of soluble defense collagens, in hematopoiesis and immune responses. Adiponectin suppressed colony formation from colony-forming units (CFU)-granulocyte-macrophage, CFU-macrophage, and CFU-granulocyte, whereas it had no effect on that of burst-forming units-erythroid or mixed erythroid-myeloid CFU. In addition, adiponectin inhibited proliferation of 4 of 9 myeloid cell lines but did not suppress proliferation of erythroid or lymphoid cell lines except for one cell line. These results suggest that adiponectin predominantly inhibits proliferation of myelomonocytic lineage cells. At least one mechanism of the growth inhibition is induction of apoptosis because treatment of acute myelomonocytic leukemia lines with adiponectin induced the appearance of subdiploid peaks and oligonucleosomal DNA fragmentation. Aside from inhibiting growth of myelomonocytic progenitors, adiponectin suppressed mature macrophage functions. Treatment of cultured macrophages with adiponectin significantly inhibited their phagocytic activity and their lipopolysaccharide-induced production of tumor necrosis factor alpha. Suppression of phagocytosis by adiponectin is mediated by one of the complement C1q receptors, C1qRp, because this function was completely abrogated by the addition of an anti-C1qRp monoclonal antibody. These observations suggest that adiponectin is an important negative regulator in hematopoiesis and immune systems and raise the possibility that it may be involved in ending inflammatory responses through its inhibitory functions. (Blood. 2000;96:1723-1732)
                Bookmark

                Author and article information

                Journal
                Exp Diabetes Res
                EDR
                Experimental Diabetes Research
                Hindawi Publishing Corporation
                1687-5214
                1687-5303
                2012
                27 December 2011
                : 2012
                : 250621
                Affiliations
                1Department of Medicine, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
                2Department of Biochemistry, Edith Wolfson Medical Center, Holon 58100, Israel
                3Epidemiology and Research Unit, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
                4Department of Endocrinology, Edith Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, P. O. Box 5, Holon 58100, Israel
                Author notes

                Academic Editor: K. Khunti

                Article
                10.1155/2012/250621
                3255106
                22253614
                fe64d6f4-c926-4150-9592-f1f77896545c
                Copyright © 2012 N. Wolfson et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 July 2011
                : 10 November 2011
                Categories
                Research Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article