42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

      research-article
      1 , 1 ,
      AIDS Research and Therapy
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          HIV protease (PR) is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing.

          Results

          We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR), and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region.

          Conclusions

          We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          pEF-BOS, a powerful mammalian expression vector.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1.

            Accurate chromosome segregation is dependent upon stable attachment of kinetochores to spindle microtubules during mitosis. A long-standing question is how kinetochores maintain stable attachment to the plus ends of dynamic microtubules that are continually growing and shortening. The Ndc80 complex is essential for persistent end-on kinetochore-microtubule attachment in cells [1, 2], but how the Ndc80 complex forms functional microtubule-binding sites remains unknown. We show that the 80 amino acid N-terminal unstructured "tail" of Hec1 is required for generating stable kinetochore-microtubule attachments. PtK1 cells depleted of endogenous Hec1 and rescued with Hec1-GFP fusion proteins deleted of the entire N terminus or the disordered N-terminal 80 amino acid tail domain fail to generate stable kinetochore-microtubule attachments. Mutation of nine amino acids within the Hec1 tail to reduce its positive charge also abolishes stable attachment. Furthermore, the mitotic checkpoint remains functional after deletion of the N-terminal 80 amino acid tail, but not after deletion of the N-terminal 207 amino acid region containing both the tail domain and a calponin homology (CH) domain. These results demonstrate that kinetochore-microtubule binding is dependent on electrostatic interactions mediated through the disordered N-terminal 80 amino acid tail domain and mitotic-checkpoint function is dependent on the CH domain of Hec1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active human immunodeficiency virus protease is required for viral infectivity.

              Retroviral proteins are synthesized as polyprotein precursors that undergo proteolytic cleavages to yield the mature viral proteins. The role of the human immunodeficiency virus (HIV) protease in the viral replication cycle was examined by use of a site-directed mutation in the protease gene. The HIV protease gene product was expressed in Escherichia coli and observed to cleave HIV gag p55 to gag p24 and gag p17 in vitro. Substitution of aspartic acid residue 25 (Asp-25) of this protein with an asparagine residue did not affect the expression of the protein, but it eliminated detectable in vitro proteolytic activity against HIV gag p55. A mutant HIV provirus was constructed that contained the Asn-25 mutation within the protease gene. SW480 human colon carcinoma cells transfected with the Asn-25 mutant proviral DNA produced virions that contained gag p55 but not gag p24, whereas virions from cells transfected with the wild-type DNA contained both gag p55 and gag p24. The mutant virions were not able to infect MT-4 lymphoid cells. In contrast, these cells were highly sensitive to infection by the wild-type virions. These results demonstrate that the HIV protease is an essential viral enzyme and, consequently, an attractive target for anti-HIV drugs.
                Bookmark

                Author and article information

                Journal
                AIDS Res Ther
                AIDS Research and Therapy
                BioMed Central
                1742-6405
                2010
                28 July 2010
                : 7
                : 27
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
                Article
                1742-6405-7-27
                10.1186/1742-6405-7-27
                2920229
                20667109
                fe808c46-b48b-4749-a730-7c94825ae3d5
                Copyright ©2010 Huang and Chen; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 May 2010
                : 28 July 2010
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article