48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hybrid Societies: Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Emergence of scaling in random networks

            Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Error and attack tolerance of complex networks

              Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
                Bookmark

                Author and article information

                Journal
                Frontiers in Robotics and AI
                Front. Robot. AI
                Frontiers Media SA
                2296-9144
                April 11 2016
                April 11 2016
                : 3
                Article
                10.3389/frobt.2016.00014
                fe8e9bf6-f217-4cbb-bd2d-f18d554c4ff3
                © 2016
                History

                Comments

                Comment on this article