35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Functional and Molecular Effects of Doxycycline Treatment on Borrelia burgdorferi Phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have shown that Borrelia burgdorferi can form antibiotic-tolerant persisters in the presence of microbiostatic drugs such as doxycycline. Precisely how this occurs is yet unknown. Our goal was to examine gene transcription by B. burgdorferi following doxycycline treatment in an effort to identify both persister-associated genes and possible targets for antimicrobial intervention. To do so, we performed next-generation RNA sequencing on doxycycline-treated spirochetes and treated spirochetes following regrowth, comparing them to untreated B. burgdorferi. A number of genes were perturbed and most of those which were statistically significant were down-regulated in the treated versus the untreated or treated/re-grown. Genes upregulated in the treated B. burgdorferi included a number of Erp genes and rplU, a 50S ribosomal protein. Among those genes associated with post-treatment regrowth were bba74 (Oms28), bba03, several peptide ABC transporters, ospA, ospB, ospC, dbpA and bba62. Studies are underway to determine if these same genes are perturbed in B. burgdorferi treated with doxycycline in a host environment.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation and cultivation of Lyme disease spirochetes.

          A Barbour (1984)
          The successful isolation and cultivation of Lyme disease spirochetes traces its lineage to early attempts at cultivating relapsing fever borreliae. Observations on the growth of Lyme disease spirochetes under different in vitro conditions may yield important clues to both the metabolic characteristics of these newly discovered organisms and the pathogenesis of Lyme disease. Images FIG. 1
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlation between plasmid content and infectivity in Borrelia burgdorferi.

            Infectivity-associated plasmids were identified in Borrelia burgdorferi B31 by using PCR to detect each of the plasmids in a panel of 19 clonal isolates. The clones exhibited high-, low-, and intermediate-infectivity phenotypes based on their frequency of isolation from needle-inoculated C3H/HeN mice. Presence or absence of 21 of the 22 plasmids was determined in each of the clones by using PCR primers specific for regions unique to each plasmid, as identified in the recently available genome sequence. Southern blot hybridization results were used to confirm the PCR results in some cases. Plasmid lp25 exhibited a direct correlation with infectivity in that it was consistently present in all clones of high or intermediate infectivity and was absent in all low-infectivity clones. lp28-1, containing the vmp-like sequence locus, also correlated with infectivity; all clones that lacked lp28-1 but contained lp25 had an intermediate infectivity phenotype, in which infection was primarily restricted to the joints. Plasmids cp9, cp32-3, lp21, lp28-2, lp28-4, and lp56 apparently are not required for infection in this model, because clones lacking these plasmids exhibited a high-infectivity phenotype. Plasmids cp26, cp32-1, cp32-2 and/or cp32-7, cp32-4, cp32-6, cp32-8, cp32-9, lp17, lp28-3, lp36, lp38, and lp54 were consistently present in all clones examined. On the basis of these results, lp25 and lp28-1 appear to encode virulence factors important in the pathogenesis of B. burgdorferi B31.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection

              The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4–6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                18 April 2019
                2019
                : 10
                : 690
                Affiliations
                [1] 1Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences , Covington, LA, United States
                [2] 2Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University , Baton Rouge, LA, United States
                Author notes

                Edited by: Alessandra Polissi, University of Milan, Italy

                Reviewed by: Peter Kraiczy, Goethe-Universität Frankfurt am Main, Germany; Sébastien Bontemps-Gallo, Institut Pasteur de Lille, France

                *Correspondence: Monica E. Embers, members@ 123456tulane.edu

                Present address: John R. Caskey, Wisconsin National Primate Research Center, Madison, WI, United States

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00690
                6482230
                31057493
                fe9384b8-c40d-4680-bf96-1bb45bcb4218
                Copyright © 2019 Caskey, Hasenkampf, Martin, Chouljenko, Subramanian, Cheslock and Embers.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2018
                : 19 March 2019
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 51, Pages: 11, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: 2P20-RR020159-08
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lyme disease,antibiotic,borrelia (borreliella) burgdorferi,rnaseq analysis,mice

                Comments

                Comment on this article