19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor.

      Journal of the American Chemical Society
      Calixarenes, chemical synthesis, chemistry, Cations, Fluorescent Dyes, Lead, Metals, analysis, Models, Molecular, Phenols, Potassium, Pyrenes, Spectrometry, Fluorescence

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new fluorescent chemosensor with two different types of cation binding sites on the lower rims of a 1,3-alternate calix[4]arene (1) is synthesized. Two pyrene moieties linked to a cation recognition unit composed of two amide groups form a strong excimer in solution. For 1, the excimer fluorescence is quenched by Pb2+, but revived by addition of K+ to the Pb2+ ligand complex. Thus, metal ion exchange produces an on-off switchable, fluorescent chemosensor. Computational results show that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbitals (LUMO) of the two pyrene moieties interact under UV irradiation of 1 and its K+ complex, while such HOMO-LUMO interactions are absent in the Pb2+ complex.

          Related collections

          Author and article information

          Comments

          Comment on this article