49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hemianaesthesia patients usually exhibit awkward and inefficient finger movements of the affected hands. Conventionally, most interventions emphasize the improvement of motor deficits, but rarely address sensory capability and sensorimotor control following stroke. Thus it is critical for stroke patients with sensory problems to incorporate appropriate strategies for dealing with sensory impairment, into traditional hand function rehabilitation programs. In this study, we used a custom-designed computerized evaluation and re-education biofeedback (CERB) prototype to analyze hand grasp performances, and monitor the training effects on hand coordination for stroke patients with sensory disturbance and without motor deficiency.

          Methods

          The CERB prototype was constructed to detect momentary pinch force modulation for 14 sub-acute and chronic stroke patients with sensory deficiency and 14 healthy controls. The other ten chronic stroke patients (ranges of stroke period: 6–60 months) were recruited to investigate the effects of 4-weeks computerized biofeedback treatments on the hand control ability. The biofeedback procedures provide visual and auditory cues to the participants when the interactive force of hand-to-object exceeded the target latitude in a pinch-up-holding task to trigger optimal motor strategy. Follow-up measurements were conducted one month after training. The hand sensibility, grip forces and results of hand functional tests were recorded and analyzed.

          Results

          The affected hands of the 14 predominant sensory stroke patients exhibited statistically significant elevation in the magnitude of peak pinch force (p = 0.033) in pinching and lifting-up tasks, and poor results for hand function tests (p = 0.005) than sound hands did. In addition, the sound hands of patients were less efficient in force modulation (p = 0.009) than the hands of healthy subjects were. Training with the biofeedback system produced significant improvements in grip force modulation (p = 0.020) and better performances in the subtests of pin insertion (p = 0.019), and lifting of lightweight objects (p = 0.005).

          Conclusions

          The CERB prototype can provide momentary and interactive information for quantitative assessing and re-educating force modulation appropriately for stroke patients with sensory deficits. Furthermore, the patients could transfer the learned strategy to improve hand function.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.

          Prevention and control of disease and injury require information about the leading medical causes of illness and exposures or risk factors. The assessment of the public-health importance of these has been hampered by the lack of common methods to investigate the overall, worldwide burden. The Global Burden of Disease Study (GBD) provides a standardised approach to epidemiological assessment and uses a standard unit, the disability-adjusted life year (DALY), to aid comparisons. DALYs for each age-sex group in each GBD region for 107 disorders were calculated, based on the estimates of mortality by cause, incidence, average age of onset, duration, and disability severity. Estimates of the burden and prevalence of exposure in different regions of disorders attributable to malnutrition, poor water supply, sanitation and personal and domestic hygiene, unsafe sex, tobacco use, alcohol, occupation, hypertension, physical inactivity, use of illicit drugs, and air pollution were developed. Developed regions account for 11.6% of the worldwide burden from all causes of death and disability, and account for 90.2% of health expenditure worldwide. Communicable, maternal, perinatal, and nutritional disorders explain 43.9%; non-communicable causes 40.9%; injuries 15.1%; malignant neoplasms 5.1%; neuropsychiatric conditions 10.5%; and cardiovascular conditions 9.7% of DALYs worldwide. The ten leading specific causes of global DALYs are, in descending order, lower respiratory infections, diarrhoeal diseases, perinatal disorders, unipolar major depression, ischaemic heart disease, cerebrovascular disease, tuberculosis, measles, road-traffic accidents, and congenital anomalies. 15.9% of DALYs worldwide are attributable to childhood malnutrition and 6.8% to poor water, and sanitation and personal and domestic hygiene. The three leading contributors to the burden of disease are communicable and perinatal disorders affecting children. The substantial burdens of neuropsychiatric disorders and injuries are under-recognised. The epidemiological transition in terms of DALYs has progressed substantially in China, Latin America and the Caribbean, other Asia and islands, and the middle eastern crescent. If the burdens of disability and death are taken into account, our list differs substantially from other lists of the leading causes of death. DALYs provide a common metric to aid meaningful comparison of the burden of risk factors, diseases, and injuries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study.

            Time course and degree of recovery of upper extremity (UE) function after stroke and the influence of initial UE paresis were studied prospectively in a community-based population of 421 consecutive stroke patients admitted acutely during a 1-year period. UE function was assessed weekly, using the Barthel Index subscores for feeding and grooming. UE paresis was assessed by the Scandinavian Stroke Scale subscores for hand and arm. The best possible UE function was achieved by 80% of the patients within 3 weeks after stroke onset and by 95% within 9 weeks; in patients with mild UE paresis, function was achieved within 3 and 6 weeks, respectively, and in patients with severe UE paresis within 6 and 11 weeks, respectively. Full UE function was achieved by 79% of patients with mild UE paresis and only by 18% of patients with severe UE paresis. A valid prognosis of UE function can be made within 3 and 6 weeks in patients with mild and severe UE paresis, respectively. Further recovery of UE function should not be expected after 6 and 11 weeks respectively, in these groups of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects.

              To be successful, precision manipulation of small objects requires a refined coordination of forces excerted on the object by the tips of the fingers and thumb. The present paper deals quantitatively with the regulation of the coordination between the grip force and the vertical lifting force, denoted as the load force, while small objects were lifted, positioned in space and replaced by human subjects using the pinch grip. It was shown that the grip force changed in parallel with the load force generated by the subject to overcome various forces counteracting the intended manipulation. The balance between the two forces was adapted to the friction between the skin and the object providing a relatively small safety margin to prevent slips, i.e. the more slippery the object the higher the grip force at any given load force. Experiments with local anaesthesia indicated that this adaptation was dependent on cutaneous afferent input. Afferent information related to the frictional condition could influence the force coordination already about 0.1 s after the object was initially gripped, i.e. approximately at the time the grip and load forces began to increase in parallel. Further, "secondary", adjustments of the force balance could occur later in response to small short-lasting slips, revealed as vibrations in the object. The new force balance following slips was maintained, indicating that the relationship between the two forces was set on the basis of a memory trace. Its updating was most likely accounted for by tactile afferent information entering intermittently at inappropriate force coordination, e.g. as during slips. The latencies between the onset of such slips and the appearance of the adjustments (0.06-0.08 s) clearly indicated that the underlying neural mechanisms operated highly automatically.
                Bookmark

                Author and article information

                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central
                1743-0003
                2012
                9 May 2012
                : 9
                : 26
                Affiliations
                [1 ]Department of Physical Medicine and Rehabilitation, National Cheng Kung University, Tainan, Taiwan
                [2 ]Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
                [3 ]Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
                [4 ]Section of Plastic Surgery, Department of Surgery, National Cheng Kung University, Tainan, Taiwan
                [5 ]Department of Occupational Therapy, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
                [6 ]Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, Tainan, Taiwan
                Article
                1743-0003-9-26
                10.1186/1743-0003-9-26
                3512515
                22571177
                feb1fa11-13ce-4669-906a-7eaa2345b01b
                Copyright ©2012 Hsu et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 July 2011
                : 20 April 2012
                Categories
                Research

                Neurosciences
                sensation,hand function,stroke,sensorimotor control,feedback control
                Neurosciences
                sensation, hand function, stroke, sensorimotor control, feedback control

                Comments

                Comment on this article