32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For the first time, a series of noble metal (Ag, Au, Pd, and Pt) nanoparticles (NPs) based on new functional graphene were successfully achieved via UV-assisted photocatalytic reduction by ZnO nanorods. The whole preparation strategy for constructing noble metal deposited graphene sheets/ZnO (GS/ZnO) was elucidated in detail in this work. First, graphene oxide based two-dimensional carbon nanostructures served as a support to disperse ZnO nanorods through a hydrothermal route. The ZnO nanorods were self-assembled onto the surface of graphene sheets, forming GS/ZnO nanocomposite, and the graphene oxide was reduced, yielding reduced graphene sheets in this synthetic procedure. Second, the GS/ZnO films were further employed as supporting materials for the dispersion of metal nanoparticles. Photogenerated electrons from UV-irradiated ZnO were transported across GS to stepwise and respectively reduce v μL metal ions (Ag(+), Pd(2+), AuCl4(-), PtCl6(2-), 20 mg/mL) into metal (Ag, Pd, Au, Pt) NPs at a location distinct from the ZnO anchored site, forming five graphene-based hybrid nanocomposites designated as GS/ZnO, GS/ZnO@Agv, GS/ZnO@Pdv, GS/ZnO@Auv, GS/ZnO@Ptv, respectively. The obtained mutihybrid nanoarchitectured materials were clearly characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). According to the diameters and distribution, the four metal NPs on GS/ZnO were divided into two categories: Ag&Au and Pd&Pt. Their difference was rooted in the rival abilities of gathering electron between graphene and different metal islands in the photochemical reduction process. The electrochemical behaviors of the five resultant hybrid nanocomposites were investigated in H2O2 as well as in potassium ferricyanide (Fe(CN)6(3-/4-)) and displayed distinct electrocatalytic activity.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Jul 24 2013
          : 5
          : 14
          Affiliations
          [1 ] Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P.R. China.
          Article
          10.1021/am401738k
          23790187
          feed4f63-ec22-4d70-8e9a-a9910dc44494
          History

          Comments

          Comment on this article