23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired Myocardial Oxygenation Response to Stress in Patients With Chronic Kidney Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Coronary artery disease and left ventricular hypertrophy are prevalent in the chronic kidney disease (CKD) and renal transplant (RT) population. Advances in cardiovascular magnetic resonance (CMR) with blood oxygen level–dependent (BOLD) technique provides capability to assess myocardial oxygenation as a measure of ischemia. We hypothesized that the myocardial oxygenation response to stress would be impaired in CKD and RT patients.

          Methods and Results

          Fifty-three subjects (23 subjects with CKD, 10 RT recipients, 10 hypertensive (HT) controls, and 10 normal controls without known coronary artery disease) underwent CMR scanning. All groups had cine and BOLD CMR at 3 T. The RT and HT groups also had late gadolinium CMR to assess infarction/replacement fibrosis. The CKD group underwent 2-dimensional echocardiography strain to assess fibrosis. Myocardial oxygenation was measured at rest and under stress with adenosine (140 μg/kg per minute) using BOLD signal intensity. A total of 2898 myocardial segments (1200 segments in CKD patients, 552 segments in RT, 480 segments in HT, and 666 segments in normal controls) were compared using linear mixed modeling. Diabetes mellitus ( P=0.47) and hypertension ( P=0.57) were similar between CKD, RT, and HT groups. The mean BOLD signal intensity change was significantly lower in the CKD and RT groups compared to HT controls and normal controls (−0.89±10.63% in CKD versus 5.66±7.87% in RT versus 15.54±9.58% in HT controls versus 16.19±11.11% in normal controls, P<0.0001). BOLD signal intensity change was associated with estimated glomerular filtration rate (β=0.16, 95% CI=0.10 to 0.22, P<0.0001). Left ventricular mass index and left ventricular septal wall diameter were similar between the CKD predialysis, RT, and HT groups. None of the CKD patients had impaired global longitudinal strain and none of the RT group had late gadolinium hyperenhancement.

          Conclusions

          Myocardial oxygenation response to stress is impaired in CKD patients and RT recipients without known coronary artery disease, and unlikely to be solely accounted for by the presence of diabetes mellitus, left ventricular hypertrophy, or myocardial scarring. The impaired myocardial oxygenation in CKD patients may be associated with declining renal function. Noncontrast BOLD CMR is a promising tool for detecting myocardial ischemia in the CKD population.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic kidney disease and mortality risk: a systematic review.

          Current guidelines identify people with chronic kidney disease (CKD) as being at high risk for cardiovascular and all-cause mortality. Because as many as 19 million Americans may have CKD, a comprehensive summary of this risk would be potentially useful for planning public health policy. A systematic review of the association between non-dialysis-dependent CKD and the risk for all-cause and cardiovascular mortality was conducted. Patient- and study-related characteristics that influenced the magnitude of these associations also were investigated. MEDLINE and EMBASE databases were searched, and reference lists through December 2004 were consulted. Authors of 10 primary studies provided additional data. Cohort studies or cohort analyses of randomized, controlled trials that compared mortality between those with and without chronically reduced kidney function were included. Studies were excluded from review when participants were followed for < 1 yr or had ESRD. Two reviewers independently extracted data on study setting, quality, participant and renal function characteristics, and outcomes. Thirty-nine studies that followed a total of 1,371,990 participants were reviewed. The unadjusted relative risk for mortality in participants with reduced kidney function compared with those without ranged from 0.94 to 5.0 and was significantly more than 1.0 in 93% of cohorts. Among the 16 studies that provided suitable data, the absolute risk for death increased exponentially with decreasing renal function. Fourteen cohorts described the risk for mortality from reduced kidney function, after adjustment for other established risk factors. Although adjusted relative hazards were consistently lower than unadjusted relative risks (median reduction 17%), they remained significantly more than 1.0 in 71% of cohorts. This review supports current guidelines that identify individuals with CKD as being at high risk for cardiovascular mortality. Determining which interventions best offset this risk remains a health priority.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999.

            Knowledge of the excess risk posed by specific cardiovascular syndromes could help in the development of strategies to reduce premature mortality among patients with chronic kidney disease (CKD). The rates of atherosclerotic vascular disease, congestive heart failure, renal replacement therapy, and death were compared in a 5% sample of the United States Medicare population in 1998 and 1999 (n = 1,091,201). Patients were divided into the following groups: 1, no diabetes, no CKD (79.7%); 2, diabetes, no CKD (16.5%); 3, CKD, no diabetes (2.2%); and 4, both CKD and diabetes (1.6%). During the 2 yr of follow-up, the rates (per 100 patient-years) in the four groups were as follows: atherosclerotic vascular disease, 14.1, 25.3, 35.7, and 49.1; congestive heart failure, 8.6, 18.5, 30.7, and 52.3; renal replacement therapy, 0.04, 0.2, 1.6, and 3.4; and death, 5.5, 8.1, 17.7, and 19.9, respectively (P < 0.0001). With use of Cox regression, the corresponding adjusted hazards ratios were as follows: atherosclerotic vascular disease, 1, 1.30, 1.16, and 1.41 (P < 0.0001); congestive heart failure, 1, 1.44, 1.28, and 1.79 (P < 0.0001); renal replacement therapy, 1, 2.52, 23.1, and 38.9 (P < 0.0001); and death, 1, 1.21, 1.38, and 1.56 (P < 0.0001). On a relative basis, patients with CKD were at a much greater risk for the least frequent study outcome, renal replacement therapy. On an absolute basis, however, the high death rates of patients with CKD may reflect accelerated rates of atherosclerotic vascular disease and congestive heart failure.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.

                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                John Wiley & Sons, Ltd (Chichester, UK )
                2047-9980
                2047-9980
                August 2015
                10 August 2015
                : 4
                : 8
                : e002249
                Affiliations
                [1 ]Department of Cardiovascular Medicine, Flinders Medical Centre Bedford Park, South Australia, Australia
                [2 ]Department of Renal Medicine, Flinders Medical Centre Bedford Park, South Australia, Australia
                [3 ]School of Medicine, Flinders University Bedford Park, South Australia, Australia
                [4 ]Flinders Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University Bedford Park, South Australia, Australia
                [5 ]South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
                [6 ]Cardiac Catheterization Laboratory, Cardiovascular Outcomes Group, New York University School of Medicine New York, NY
                Author notes
                Correspondence to: Joseph B. Selvanayagam, MBBS (Hons), DPhil, Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia. E-mail: Joseph.Selvanayagam@ 123456flinders.edu.au
                Article
                10.1161/JAHA.115.002249
                4599475
                26260054
                ff0aace2-47d2-4a3e-80bd-696e93354436
                © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 29 May 2015
                : 07 July 2015
                Categories
                Original Research

                Cardiovascular Medicine
                blood oxygen level–dependent,chronic kidney disease,coronary artery disease,myocardial ischemia,myocardial oxygenation,renal transplant

                Comments

                Comment on this article