3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Impact of the COVID-19 Pandemic on Cardiac Procedure Wait List Mortality in Ontario, Canada

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The novel SARS-CoV-2 (COVID-19) pandemic has dramatically altered the delivery of healthcare services, resulting in significant referral pattern changes, delayed presentations, and procedural delays. Our objective was to determine the effect of the COVID-19 pandemic on all-cause mortality in patients awaiting commonly performed cardiac procedures.

          Methods

          Clinical and administrative data sets were linked to identify all adults referred for: (1) percutaneous coronary intervention; (2) coronary artery bypass grafting; (3) valve surgery; and (4) transcatheter aortic valve implantation, from January 2014 to September 2020 in Ontario, Canada. Piece-wise regression models were used to determine the effect of the COVID-19 pandemic on referrals and procedural volume. Multivariable Cox proportional hazards models were used to determine the effect of the pandemic on waitlist mortality for the 4 procedures.

          Results

          We included 584,341 patients who were first-time referrals for 1 of the 4 procedures, of whom 37,718 (6.4%) were referred during the pandemic. The pandemic period was associated with a significant decline in the number of referrals and procedures completed compared with the prepandemic period. Referral during the pandemic period was a significant predictor for increased all-cause mortality for the percutaneous coronary intervention (hazard ratio, 1.83; 95% confidence interval, 1.47-2.27) and coronary artery bypass grafting (hazard ratio, 1.96; 95% confidence interval, 1.28-3.01), but not for surgical valve or transcatheter aortic valve implantation referrals. Procedural wait times were shorter during the pandemic period compared with the prepandemic period.

          Conclusions

          There was a significant decrease in referrals and procedures completed for cardiac procedures during the pandemic period. Referral during the pandemic was associated with increased all-cause mortality while awaiting coronary revascularization.

          Résumé

          Contexte

          La nouvelle pandémie de SRAS-CoV-2 (COVID-19) a radicalement modifié la prestation des services de soins de santé, entraînant des changements importants dans l'orientation du parcours de soin des patients, des présentations retardées et des retards dans les procédures. Notre objectif était de déterminer l'effet de la pandémie de la COVID-19 sur la mortalité, toutes causes confondues, chez les patients en attente de procédures cardiaques courantes.

          Méthodes

          Des collections de données cliniques et administratives ont été réunies pour identifier tous les adultes ayant été orientés vers: (1) une intervention coronarienne percutanée; (2) un pontage coronarien; (3) une chirurgie valvulaire; et (4) une implantation valvulaire aortique par cathéter, de janvier 2014 à septembre 2020 en Ontario, Canada. Des modèles de régression par segments ont été utilisés pour déterminer l'effet de la pandémie de COVID-19 sur les renvois et le volume de procédures. Des modèles à risques proportionnels multivariables de Cox ont été utilisés pour déterminer l'effet de la pandémie sur la mortalité des patients en liste d'attente pour les quatre procédures.

          Résultats

          Nous avons inclus 584 341 patients qui étaient orientés pour la première fois pour l'une des quatre procédures, dont 37 718 (6,4 %) ont été orientés pendant la pandémie. La période de pandémie a été associée à une baisse significative du nombre d'orientations et de procédures réalisées par rapport à la période prépandémique. Le niveau d'orientation pendant la période pandémique était un facteur prédictif significatif de l'augmentation de la mortalité toutes causes confondues pour l'intervention coronarienne percutanée (rapport de risque, 1,83; intervalle de confiance à 95 %, 1,47-2,27) et le pontage aorto-coronarien (rapport de risque, 1,96; intervalle de confiance à 95 %, 1,28-3,01), mais pas pour les orientations pour une valve chirurgicale ou une implantation valvulaire aortique par cathéter. Les temps d'attente pour les interventions chirurgicales étaient plus courts pendant la période pandémique que pendant la période prépandémique.

          Conclusions

          Il y a eu une diminution significative des orientations et des procédures réalisées pour les interventions cardiaques pendant la période pandémique. Le niveau d'orientation pendant la pandémie a été associée à une augmentation de la mortalité toutes causes confondues en attendant une revascularisation coronarienne.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced Rate of Hospital Admissions for ACS during Covid-19 Outbreak in Northern Italy

          To the Editor: To address the coronavirus (Covid-19) pandemic, 1 strict social containment measures have been adopted worldwide, and health care systems have been reorganized to cope with the enormous increase in the numbers of acutely ill patients. 2,3 During this same period, some changes in the pattern of hospital admissions for other conditions have been noted. The aim of the present analysis is to investigate the rate of hospital admissions for acute coronary syndrome (ACS) during the early days of the Covid-19 outbreak. In this study, we performed a retrospective analysis of clinical and angiographic characteristics of consecutive patients who were admitted for ACS at 15 hospitals in northern Italy. All the hospitals were hubs of local networks for treatment involving primary percutaneous coronary intervention. The study period was defined as the time between the first confirmed case of Covid-19 in Italy (February 20, 2020) and March 31, 2020. We compared hospitalization rates between the study period and two control periods: a corresponding period during the previous year (February 20 to March 31, 2019) and an earlier period during the same year (January 1 to February 19, 2020). The primary outcome was the overall rate of hospital admissions for ACS. We calculated incidence rates for the primary outcome by dividing the number of cumulative admissions by the number of days for each time period. Incidence rate ratios comparing the study period with each of the control periods were calculated with the use of Poisson regression. (Details regarding the study methods are provided in the Supplementary Appendix, available with the full text of this letter at NEJM.org.) Of the 547 patients who were hospitalized for ACS during the study period, 420 (76.8%) were males; the mean (±SD) age was 68±12 years. Of these patients, 248 (45.3%) presented with ST-segment elevation myocardial infarction (STEMI). The mean admission rate for ACS during the study period was 13.3 admissions per day. This rate was significantly lower than either the rate during the earlier period in the same year (total number of admissions, 899; 18.0 admissions per day; incidence rate ratio, 0.74; 95% confidence interval [CI], 0.66 to 0.82; P<0.001) or the rate during the previous year (total number of admissions, 756; 18.9 admissions per day; incidence rate ratio, 0.70; 95% CI, 0.63 to 0.78; P<0.001). The incidence rate ratios for individual ACS subtypes are presented in Table 1. After the national lockdown was implemented on March 8, 2020, 4 a further reduction in ACS admissions was reported. (Details regarding the full secondary analyses are provided in the Supplementary Appendix.) This report shows a significant decrease in ACS-related hospitalization rates across several cardiovascular centers in northern Italy during the early days of the Covid-19 outbreak. Recent data suggest a significant increase in mortality during this period that was not fully explained by Covid-19 cases alone. 5 This observation and data from our study raise the question of whether some patients have died from ACS without seeking medical attention during the Covid-19 pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impact of the COVID-19 Pandemic on Emergency Department Visits — United States, January 1, 2019–May 30, 2020

            On March 13, 2020, the United States declared a national emergency to combat coronavirus disease 2019 (COVID-19). As the number of persons hospitalized with COVID-19 increased, early reports from Austria ( 1 ), Hong Kong ( 2 ), Italy ( 3 ), and California ( 4 ) suggested sharp drops in the numbers of persons seeking emergency medical care for other reasons. To quantify the effect of COVID-19 on U.S. emergency department (ED) visits, CDC compared the volume of ED visits during four weeks early in the pandemic March 29–April 25, 2020 (weeks 14 to 17; the early pandemic period) to that during March 31–April 27, 2019 (the comparison period). During the early pandemic period, the total number of U.S. ED visits was 42% lower than during the same period a year earlier, with the largest declines in visits in persons aged ≤14 years, females, and the Northeast region. Health messages that reinforce the importance of immediately seeking care for symptoms of serious conditions, such as myocardial infarction, are needed. To minimize SARS-CoV-2, the virus that causes COVID-19, transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance. To assess trends in ED visits during the pandemic, CDC analyzed data from the National Syndromic Surveillance Program (NSSP), a collaborative network developed and maintained by CDC, state and local health departments, and academic and private sector health partners to collect electronic health data in real time. The national data in NSSP includes ED visits from a subset of hospitals in 47 states (all but Hawaii, South Dakota, and Wyoming), capturing approximately 73% of ED visits in the United States able to be analyzed at the national level. During the most recent week, 3,552 EDs reported data. Total ED visit volume, as well as patient age, sex, region, and reason for visit were analyzed. Weekly number of ED visits were examined during January 1, 2019–May 30, 2020. In addition, ED visits during two 4-week periods were compared using mean differences and ratios. The change in mean visits per week during the early pandemic period and the comparison period was calculated as the mean difference in total visits in a diagnostic category between the two periods, divided by 4 weeks ([visits in diagnostic category {early pandemic period} – visits in diagnostic category {comparison period}]/4). The visit prevalence ratio (PR) was calculated for each diagnostic category as the proportion of ED visits during the early pandemic period divided by the proportion of visits during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period}]/[visits in category {comparison period}/all visits {comparison period}]). All analyses were conducted using R software (version 3.6.0; R Foundation). Reason for visit was analyzed using a subset of records that had at least one specific, billable International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) code. In addition to Hawaii, South Dakota, and Wyoming, four states (Florida, Louisiana, New York outside New York City, and Oklahoma), two California counties reporting to the NSSP (Santa Cruz and Solano), and the District of Columbia were also excluded from the diagnostic code analysis because they did not report diagnostic codes during both periods or had differences in completeness of codes between 2019 and 2020. Among eligible visits for the diagnostic code analysis, 20.3% without a valid ICD-10-CM code were excluded. ED visits were categorized using the Clinical Classifications Software Refined tool (version 2020.2; Healthcare Cost and Utilization Project), which combines ICD-10-CM codes into clinically meaningful groups ( 5 ). A visit with multiple ICD-10-CM codes could be included in multiple categories; for example, a visit by a patient with diabetes and hypertension would be included in the category for diabetes and the category for hypertension. Because COVID-19 is not yet classified in this tool, a custom category, defined as any visit with the ICD-10-CM code for confirmed COVID-19 diagnosis (U07.1), was created ( 6 ). The analysis was limited to the top 200 diagnostic categories during each period. The lowest number of visits reported to NSSP occurred during April 12–18, 2020 (week 16). Although visits have increased since the nadir, the most recent complete week (May 24–30, week 22) remained 26% below the corresponding week in 2019 (Figure 1). The number of ED visits decreased 42%, from a mean of 2,099,734 per week during March 31–April 27, 2019, to a mean of 1,220,211 per week during the early pandemic period of March 29–April 25, 2020. Visits declined for every age group (Figure 2), with the largest proportional declines in visits by children aged ≤10 years (72%) and 11–14 years (71%). Declines in ED visits varied by U.S. Department of Health and Human Services region,* with the largest declines in the Northeast (Region 1, 49%) and in the region that includes New Jersey and New York (Region 2, 48%) (Figure 2). Visits declined 37% among males and 45% among females across all NSSP EDs between the comparison and early pandemic periods. FIGURE 1 Weekly number of emergency department (ED) visits — National Syndromic Surveillance Program, United States,* January 1, 2019– May 30, 2020† * Hawaii, South Dakota, and Wyoming are not included. † Vertical lines indicate the beginning and end of the 4-week coronavirus disease 2019 (COVID-19) early pandemic period (March 29–April 25, 2020) and the comparison period (March 31–April 27, 2019). The figure is a line graph showing the weekly number of emergency department visits, using data from the National Syndromic Surveillance Program, in the United States, during January 1, 2019–May 30, 2020. FIGURE 2 Emergency department (ED) visits, by age group (A) and U.S. Department of Health and Human Services (HHS) region* (B) — National Syndromic Surveillance Program, United States,† March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) * Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Region 2: New Jersey and New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas; Region 7: Iowa, Kansas, Missouri, and Nebraska; Region 8: Colorado, Montana, North Dakota, and Utah; Region 9: Arizona, California, and Nevada; Region 10: Alaska, Idaho, Oregon, and Washington. † Hawaii, South Dakota, and Wyoming are not included. The figure is a bar chart showing the emergency department visits, by age group and U.S. Department of Health and Human Services region, using data from the National Syndromic Surveillance Program, in the United States, during March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (pandemic period). Among all ages, an increase of >100 mean visits per week from the comparison period to the early pandemic period occurred in eight of the top 200 diagnostic categories (Table). These included 1) exposure, encounters, screening, or contact with infectious disease (mean increase 18,834 visits per week); 2) COVID-19 (17,774); 3) other general signs and symptoms (4,532); 4) pneumonia not caused by tuberculosis (3,911); 5) other specified and unspecified lower respiratory disease (1,506); 6) respiratory failure, insufficiency, or arrest (776); 7) cardiac arrest and ventricular fibrillation (472); and 8) socioeconomic or psychosocial factors (354). The largest declines were in visits for abdominal pain and other digestive or abdomen signs and symptoms (–66,456), musculoskeletal pain excluding low back pain (–52,150), essential hypertension (–45,184), nausea and vomiting (–38,536), other specified upper respiratory infections (–36,189), sprains and strains (–33,709), and superficial injuries (–30,918). Visits for nonspecific chest pain were also among the top 20 diagnostic categories for which visits decreased (–24,258). Although not in the top 20 declining diagnoses, visits for acute myocardial infarction also declined (–1,156). TABLE Differences in mean weekly numbers of emergency department (ED) visits* for diagnostic categories with the largest increases or decreases† and prevalence ratios§ comparing the proportion of ED visits in each diagnostic category, for categories with the highest and lowest ratios — National Syndromic Surveillance Program, United States,¶ March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) Diagnostic category Change in mean no. of weekly ED visits* Prevalence ratio (95% CI)§ All categories with higher visit counts during the early pandemic period Exposure, encounters, screening, or contact with infectious disease** 18,834 3.79 (3.76–3.83) COVID-19 17,774 — Other general signs and symptoms** 4,532 1.87 (1.86–1.89) Pneumonia (except that caused by tuberculosis)** 3,911 1.91 (1.90–1.93) Other specified and unspecified lower respiratory disease** 1,506 1.99 (1.96–2.02) Respiratory failure, insufficiency, arrest** 776 1.76 (1.74–1.78) Cardiac arrest and ventricular fibrillation** 472 1.98 (1.93–2.03) Socioeconomic or psychosocial factors** 354 1.78 (1.75–1.81) Other top 10 highest prevalence ratios Mental and substance use disorders, in remission** 6 1.69 (1.64–1.75) Other specified encounters and counseling** 22 1.69 (1.67–1.72) Stimulant-related disorders** −189 1.65 (1.62–1.67) Top 20 categories with lower visit counts during the early pandemic period Abdominal pain and other digestive or abdomen signs and symptoms −66,456 0.93 (0.93–0.93) Musculoskeletal pain, not low back pain −52,150 0.81 (0.81–0.82) Essential hypertension −45,184 1.11 (1.10–1.11) Nausea and vomiting −38,536 0.85 (0.84–0.85) Other specified upper respiratory infections −36,189 0.82 (0.81–0.82) Sprains and strains, initial encounter †† −33,709 0.61 (0.61–0.62) Superficial injury; contusion, initial encounter −30,918 0.85 (0.84–0.85) Personal or family history of disease −28,734 1.21 (1.20–1.22) Headache, including migraine −27,458 0.85 (0.84–0.85) Other unspecified injury −25,974 0.84 (0.83–0.84) Nonspecific chest pain −24,258 1.20 (1.20–1.21) Tobacco-related disorders −23,657 1.19 (1.18–1.19) Urinary tract infections −23,346 1.02 (1.02–1.03) Asthma −20,660 0.91 (0.90–0.91) Disorders of lipid metabolism −20,145 1.12 (1.11–1.13) Spondylopathies/Spondyloarthropathy (including infective) −19,441 0.78 (0.77–0.79) Otitis media †† −17,852 0.35 (0.34–0.36) Diabetes mellitus without complication −15,893 1.10 (1.10–1.11) Skin and subcutaneous tissue infections −15,598 1.01 (1.00–1.02) Chronic obstructive pulmonary disease and bronchiectasis −15,520 1.05 (1.04–1.06) Other top 10 lowest prevalence ratios Influenza †† −12,094 0.16 (0.15–0.16) No immunization or underimmunization †† −1,895 0.28 (0.27–0.30) Neoplasm-related encounters †† −1,926 0.40 (0.39–0.42) Intestinal infection †† −5,310 0.52 (0.51–0.54) Cornea and external disease †† −9,096 0.54 (0.53–0.55) Sinusitis †† −7,283 0.55 (0.54–0.56) Acute bronchitis †† −15,470 0.59 (0.58–0.60) Noninfectious gastroenteritis †† −11,572 0.63 (0.62–0.64) Abbreviations: CI = confidence interval; COVID-19 = coronavirus disease 2019. * The change in visits per week during the early pandemic and comparison periods was calculated as the difference in total visits between the two periods, divided by 4 weeks ([visits in diagnostic category, {early pandemic period} – visits in diagnostic category, {comparison period}] / 4). † Analysis is limited to the 200 most common diagnostic categories. All eight diagnostic categories with an increase of >100 in the mean number of visits nationwide in the early pandemic period are shown. The top 20 categories with decreasing visit counts are shown. § Ratio calculated as the proportion of all ED visits in each diagnostic category during the early pandemic period, divided by the proportion of all ED visits in that category during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period})/(visits in category {comparison period}/all visits {comparison period}]). Ratios >1 indicate a higher proportion of visits in that category during the early pandemic period than the comparison period; ratios <1 indicate a lower proportion during the early pandemic than during the comparison period. Analysis is limited to the 200 most common diagnostic categories. The 10 categories with the highest and lowest ratios are shown. ¶ Florida, Hawaii, Louisiana, New York outside of New York City, Oklahoma, South Dakota, Wyoming, Santa Cruz and Solano counties in California, and the District of Columbia are not included. ** Top 10 highest prevalence ratios; higher proportion of visits in the early pandemic period than the comparison period. †† Top 10 lowest prevalence ratios; lower proportion of visits in the early pandemic period than the comparison period. During the early pandemic period, the proportion of ED visits for exposure, encounters, screening, or contact with infectious disease compared with total visits was nearly four times as large as during the comparison period (Table) (prevalence ratio [PR] = 3.79, 95% confidence interval [CI] = 3.76–3.83). The other diagnostic categories with the highest proportions of visits during the early pandemic compared with the comparison period were other specified and unspecified lower respiratory disease, which did not include influenza, pneumonia, asthma, or bronchitis (PR = 1.99; 95% CI = 1.96–2.02), cardiac arrest and ventricular fibrillation (PR = 1.98; 95% CI = 1.93–2.03), and pneumonia not caused by tuberculosis (PR = 1.91; 95% CI = 1.90–1.93). Diagnostic categories that were recorded less commonly during the early pandemic period included influenza (PR = 0.16; 95% CI = 0.15–0.16), no immunization or underimmunization (PR = 0.28; 95% CI = 0.27–0.30), otitis media (PR = 0.35; 95% CI = 0.34–0.36), and neoplasm-related encounters (PR = 0.40; 95% CI = 0.39–0.42). In the 2019 comparison period, 12% of all ED visits were in children aged ≤10 years old, compared with 6% during the early pandemic period. Among children aged ≤10 years, the largest declines were in visits for influenza (97% decrease), otitis media (85%), other specified upper respiratory conditions (84%), nausea and vomiting (84%), asthma (84%), viral infection (79%), respiratory signs and symptoms (78%), abdominal pain and other digestive or abdomen symptoms (78%), and fever (72%). Mean weekly visits with confirmed COVID-19 diagnoses and screening for infectious disease during the early pandemic period were lower among children than among adults. Among all ages, the diagnostic categories with the largest changes (abdominal pain and other digestive or abdomen signs and symptoms, musculoskeletal pain, and essential hypertension) were the same in males and females, but declines in those categories were larger in females than males. Females also had large declines in visits for urinary tract infections (–19,833 mean weekly visits). Discussion During an early 4-week interval in the COVID-19 pandemic, ED visits were substantially lower than during the same 4-week period during the previous year; these decreases were especially pronounced for children and females and in the Northeast. In addition to diagnoses associated with lower respiratory disease, pneumonia, and difficulty breathing, the number and ratio of visits (early pandemic period versus comparison period) for cardiac arrest and ventricular fibrillation increased. The number of visits for conditions including nonspecific chest pain and acute myocardial infarction decreased, suggesting that some persons could be delaying care for conditions that might result in additional mortality if left untreated. Some declines were in categories including otitis media, superficial injuries, and sprains and strains that can often be managed through primary or urgent care. Future analyses will help clarify the proportion of the decline in ED visits that were not preventable or avoidable such as those for life-threatening conditions, those that were manageable through primary care, and those that represented actual reductions in injuries or illness attributable to changing activity patterns during the pandemic (such as lower risks for occupational and motor vehicle injuries or other infectious diseases). The striking decline in ED visits nationwide, with the highest declines in regions where the pandemic was most severe in April 2020, suggests that the pandemic has altered the use of the ED by the public. Persons who use the ED as a safety net because they lack access to primary care and telemedicine might be disproportionately affected if they avoid seeking care because of concerns about the infection risk in the ED. Syndromic surveillance has important strengths, including automated electronic reporting and the ability to track outbreaks in real time ( 7 ). Among all visits, 74% are reported within 24 hours, with 75% of discharge diagnoses typically added to the record within 1 week. The findings in this report are subject to at least four limitations. First, hospitals reporting to NSSP change over time as facilities are added, and more rarely, as they close ( 8 ). An average of 3,173 hospitals reported to NSSP nationally in April 2019, representing an estimated 66% of U.S. ED visits, and an average of 3,467 reported in April 2020, representing 73% of ED visits. Second, diagnostic categories rely on the use of specific codes, which were missing in 20% of visits and might be used inconsistently across hospitals and providers, which could result in misclassification. The COVID-19 diagnosis code was introduced recently (April 1, 2020) and timing of uptake might have differed across hospitals ( 6 ). Third, NSSP coverage is not uniform across or within all states; in some states nearly all hospitals report, whereas in others, a lower proportion statewide or only those in certain counties report. Finally, because this analysis is limited to ED visit data, the proportion of persons who did not visit EDs but received treatment elsewhere is not captured. Health care systems should continue to address public concern about exposure to SARS-CoV-2 in the ED through adherence to CDC infection control recommendations, such as immediately screening every person for fever and symptoms of COVID-19, and maintaining separate, well-ventilated triage areas for patients with and without signs and symptoms of COVID-19 ( 9 ). Wider access is needed to health messages that reinforce the importance of immediately seeking care for serious conditions for which ED visits cannot be avoided, such as symptoms of myocardial infarction. Expanded access to triage telephone lines that help persons rapidly decide whether they need to go to an ED for symptoms of possible COVID-19 infection and other urgent conditions is also needed. For conditions that do not require immediate care or in-person treatment, health care systems should continue to expand the use of virtual visits during the pandemic ( 10 ). Summary What is already known about this topic? The National Syndromic Surveillance Program (NSSP) collects electronic health data in real time. What is added by this report? NSSP found that emergency department (ED) visits declined 42% during the early COVID-19 pandemic, from a mean of 2.1 million per week (March 31–April 27, 2019) to 1.2 million (March 29–April 25, 2020), with the steepest decreases in persons aged ≤14 years, females, and the Northeast. The proportion of infectious disease–related visits was four times higher during the early pandemic period. What are the implications for public health practice? To minimize SARS-CoV-2 transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Science Underlying COVID-19: Implications for the Cardiovascular System

              Corona Virus Disease 2019 (COVID-19) pandemic has impacted health and economy worldwide on an unprecedented scale. Patients have diverse clinical outcomes, but those with pre-existing cardiovascular (CV) disease, hypertension, and related conditions incur disproportionately worse outcome. The high infectivity of the SARS-CoV-2 virus is in part related to new mutations in the receptor binding domain, and acquisition of a furin cleavage site in the S spike protein. The continued viral shedding in the asymptomatic and pre-symptomatic individuals enhances its community transmission. The virus uses the ACE2 receptor for internalization, aided by TMPRSS2 protease. The tissue localization of the receptors correlates with COVDI-19 presenting symptoms and organ dysfunction. Virus-induced ACE2 down regulation may attenuate its function, diminish its anti-inflammatory role, and heightened angiotensin II effects in the predisposed patients. Lymphopenia occurs early and is prognostic, potentially associated with reduction of the CD4+ and some CD8+ T cells. This leads to imbalance of the innate/acquired immune response, delayed viral clearance, and hyper stimulated macrophages and neutrophils. Appropriate type I interferon pathway activation is critical for virus attenuation, and balanced immune response. Persistent immune activation in predisposed patients, such as the elderly and those with CV risk, can lead to hemophagocytosis like syndrome, with uncontrolled amplification of cytokine production, leading to multi-organ failure and death. In addition to the airways and lungs, the cardiovascular system is often involved in COVID-19 early, reflected in the release of highly sensitive troponin and natriuretic peptides, which are all extremely prognostic, particularly in those showing continued rise, along with cytokines such as IL-6. Inflammation in the vascular system can result in diffuse microangiopathy with thrombosis. Inflammation in the myocardium can result in myocarditis, heart failure, cardiac arrhythmias, acute coronary syndrome, rapid deterioration and sudden death. Aggressive support based on early prognostic indicators with expectant management can potentially improve recovery. Appropriate treatment for heart failure, arrhythmias, acute coronary syndrome and thrombosis remain important. Specific evidence based treatment strategies for COVID-19 will emerge with ongoing global collaboration on multiple approaches being evaluated. To protect the wider population, antibody testing and effective vaccine will be needed to make COVID-19 history.
                Bookmark

                Author and article information

                Journal
                Can J Cardiol
                Can J Cardiol
                The Canadian Journal of Cardiology
                Canadian Cardiovascular Society. Published by Elsevier Inc.
                0828-282X
                1916-7075
                30 September 2021
                30 September 2021
                Affiliations
                [a ]Division of Cardiac Surgery, Department of Surgery, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
                [b ]Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
                [c ]ICES, Toronto, Ontario, Canada
                [d ]Division of Cardiology, Department of Medicine, Schulich Heart Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
                [e ]Division of Cardiac Surgery, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
                [f ]Center for Heart Valve Innovation, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
                [g ]Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
                [h ]Peter Munk Cardiac Centre, University Health Network, Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
                [i ]Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
                Author notes
                [* ]Corresponding author: Dr Harindra C. Wijeysundera, Schulich Heart Program, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Room A202, Toronto, Ontario M4N 3M5, Canada. Tel.: +1-416-480-4527.
                Article
                S0828-282X(21)00284-1
                10.1016/j.cjca.2021.05.008
                8481095
                34600793
                ff1af4ad-baa1-4289-9786-a8f50a718ba9
                © 2021 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 20 March 2021
                : 18 May 2021
                Categories
                Clinical Research

                Comments

                Comment on this article