141
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1 −/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1 −/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.

          Author Summary

          West Nile virus (WNV) is a mosquito-transmitted RNA virus that has emerged in the Western hemisphere and is now the leading cause of arboviral encephalitis in the United States. However, the virus/host interface that controls WNV pathogenesis is not well understood. Previous studies have established that the innate immune response and interferon (IFN) defenses are essential for controlling virus replication and dissemination. In this study, we assessed the importance of the RIG-I like receptor (RLR) signaling pathway in WNV pathogenesis through analysis of mice lacking IPS-1, the central adaptor molecule of RLR signaling. Our studies revealed that IPS-1 is essential for protection against WNV infection and that it regulates processes that control virus replication and triggering of innate immune defenses. We found that IPS-1 plays an important role in establishing adaptive immunity through an innate/adaptive interface that elicits effective antibody responses and controls the expansion of regulatory T cells. Thus, RLRs are essential for pathogen recognition of WNV infection and their signaling programs help orchestrate immune response maturation, regulation of inflammation, and immune homeostasis that define the outcome of WNV infection.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

          Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8alpha+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8alpha+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3-/- mice were defective in cross-presentation, and Batf3-/- mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3-/- mice. These results suggest an important role for CD8alpha+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell type-specific involvement of RIG-I in antiviral response.

            Toll-like receptors (TLRs) play an important role in antiviral response by recognizing viral components. Recently, a RNA helicase, RIG-I, was also suggested to recognize viral double-stranded RNA. However, how these molecules contribute to viral recognition in vivo is poorly understood. We show by gene targeting that RIG-I is essential for induction of type I interferons (IFNs) after infection with RNA viruses in fibroblasts and conventional dendritic cells (DCs). RIG-I induces type I IFNs by activating IRF3 via IkappaB kinase-related kinases. In contrast, plasmacytoid DCs, which produce large amounts of IFN-alpha, use the TLR system rather than RIG-I for viral detection. Taken together, RIG-I and the TLR system exert antiviral responses in a cell type-specific manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.

              The cellular protein retinoic acid-inducible gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral responses including the production of type I IFN. RIG-I contains a domain that belongs to a DExD/H-box helicase family and exhibits an N-terminal caspase recruitment domain (CARD) homology. There are three genes encoding RIG-I-related proteins in human and mouse genomes. Melanoma differentiation associated gene 5 (MDA5), which consists of CARD and a helicase domain, functions as a positive regulator, similarly to RIG-I. Both proteins sense viral RNA with a helicase domain and transmit a signal downstream by CARD; thus, these proteins share overlapping functions. Another protein, LGP2, lacks the CARD homology and functions as a negative regulator by interfering with the recognition of viral RNA by RIG-I and MDA5. The nonstructural protein 3/4A protein of hepatitis C virus blocks the signaling by RIG-I and MDA5; however, the V protein of the Sendai virus selectively abrogates the MDA5 function. These results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2010
                February 2010
                5 February 2010
                : 6
                : 2
                : e1000757
                Affiliations
                [1 ]Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
                [2 ]Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [3 ]Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
                University of North Carolina, United States of America
                Author notes
                [¤a]

                Current address: Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America

                [¤b]

                Current address: Department of Immunology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America

                Conceived and designed the experiments: MSS JML MG. Performed the experiments: MSS DYM ST JML MSD. Analyzed the data: MSS DYM JML NZ SD AR MB EAC MK MSD MG. Contributed reagents/materials/analysis tools: JML NZ SD AR MB EAC MK. Wrote the paper: MSS MG.

                Article
                09-PLPA-RA-1283R2
                10.1371/journal.ppat.1000757
                2816698
                20140199
                ff1d65cc-e461-47b1-85d7-ff82b4847e74
                Suthar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 July 2009
                : 7 January 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Immunology/Leukocyte Activation
                Infectious Diseases/Infectious Diseases of the Nervous System
                Infectious Diseases/Viral Infections
                Virology
                Virology/Effects of Virus Infection on Host Gene Expression
                Virology/Emerging Viral Diseases
                Virology/Host Antiviral Responses
                Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article