60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse.

          Author Summary

          There is general consensus that multiple sclerosis (MS) is associated with Epstein-Barr virus (EBV) infection but the mechanistic links are still debated. EBV is a B-lymphotropic herpesvirus widespread in the human population and normally contained as a persistent, asymptomatic infection by immune surveillance. However, EBV can cause infectious mononucleosis, is associated with numerous human malignancies, and is implicated in some common autoimmune diseases. While EBV infection alone cannot explain MS development, it has been postulated that in susceptible individuals alterations in the mechanisms regulating the immune response to the virus may contribute to MS pathogenesis. Here, we show that MS patients with inactive disease exhibit a lower CD8+ T-cell response to EBV when compared to healthy donors and active MS patients while the latter have a higher frequency of CD8+ T cells specific for EBV lytic antigens. Therapy with interferon-β and natalizumab, two treatments for relapsing-remitting MS, was associated with marked changes in the EBV specific CD8+ T cell response. We also demonstrate that one of the EBV lytic antigens recognized by CD8+ T cells expanding in the blood during active MS is expressed in the inflamed MS brain. Our results support a model of MS pathogenesis in which EBV infection and reactivation in the CNS stimulates an immunopathological response and suggest that antiviral or immunomodulatory therapies aimed at restoring the host-EBV balance could be beneficial to MS patients.

          Related collections

          Author and article information

          Contributors
          Role: Editor
          Journal
          PLoS Pathog
          PLoS Pathog
          plos
          plospath
          PLoS Pathogens
          Public Library of Science (San Francisco, USA )
          1553-7366
          1553-7374
          April 2013
          April 2013
          11 April 2013
          : 9
          : 4
          : e1003220
          Affiliations
          [1 ]Neuroimmunology Unit, Fondazione Santa Lucia, (I.R.C.C.S.), Rome, Italy
          [2 ]Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
          [3 ]Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
          [4 ]Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
          [5 ]Department of Neurosciences, S Camillo Forlanini Hospital, Rome, Italy
          [6 ]Department of Neurosciences, University Tor Vergata, Rome, Italy
          [7 ]Centre for Experimental Neurological Therapies, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
          Emory University, United States of America
          Author notes

          Marco Salvetti, MD, received lecture fees from Biogen-Dompé and research support from Bayer-Schering, Biogen-Dompé, Merck-Serono, Sanofi-Aventis. Claudio Gasperini, MD, has served as a consultant for Merck Serono and Biogen Idec, and has received speaker honoraria from Teva, Merck Serono, Bayer Shering and Biogec Idec. Diego Centonze, MD, is an Advisory Board member of Merck-Serono, Teva and Bayer Shering and received funding for travelling and speaker honoraria or consultation fees from Merck Serono, Teva, Novartis, Bayer Shering, Sanofi-Aventis and Biogen Idec. He is also an external expert consultant of the European Medicine Agency (EMA) and the principal investigator in clinical trials for Novartis, Merck Serono, Teva, Bayer Shering, Sanofi Aventis and Biogen Idec. The other authors have no competing interests to report. This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

          Conceived and designed the experiments: D.F. Angelini, B. Serafini, E.M. Coccia, F. Aloisi, L. Battistini. Analyzed the data: D.F. Angelini, B. Serafini, M. Salvetti, E.M. Coccia, G. Borsellino, F. Aloisi, L. Battistini. Contributed reagents/materials/analysis tools: S. Ruggieri, C. Gasperini, F. Buttari, D. Centonze, R. Mechelli, M. Salvetti. Performed the experiments: D.F. Angelini, B. Serafini, E. Piras, M. Severa, B. Rosicarelli, G. Borsellino. Wrote the paper: D.F. Angelini, G. Borsellino, F. Aloisi, L. Battistini.

          ¶ FA and LB share senior authorship.

          Article
          PPATHOGENS-D-12-01854
          10.1371/journal.ppat.1003220
          3623710
          23592979
          ff60f2a4-ff6f-4612-901e-dbbe6df22fee
          Copyright @ 2013

          This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

          History
          : 31 July 2012
          : 15 January 2013
          Page count
          Pages: 16
          Funding
          The study was supported by Italian Multiple Sclerosis Foundation (to DC, MS, EMC, FA, LB), European FP6 NeuroproMiSe Integrated project (Contract: LSHM-CT-2005-01863) (to FA, LB), Italian Ministry of Health, Ricerca Finalizzata 2007 - Strategic Project on Multiple Sclerosis (Contract: 107 to EMC, MS, FA, LB), and Ricerca Finalizzata 2010-Giovani Ricercatori (to DC), the French Society for Research in Multiple Sclerosis (ARSEP) (to MS, LB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
          Categories
          Research Article
          Biology
          Immunology
          Immune Response
          Immunopathology
          Microbiology
          Host-Pathogen Interaction
          Pathogenesis
          Virology

          Infectious disease & Microbiology
          Infectious disease & Microbiology

          Comments

          Comment on this article