3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuclear Factor-Kappa B-induced miRNA-518a-5p represses trophoblast cell migration and invasion by the Nuclear Factor-Kappa B pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Preeclampsia is associated with the insufficient invasion of trophoblasts. NF-κB is a transcription factor in almost all mammalian cells and has been validated to be upregulated in the maternal circulation and placenta of women with preeclampsia. MiR-518a-5p is also overexpressed in pre-eclamptic placenta. The present study was designed to explore whether NF-κB can transcriptionally activate miR-518a-5p and investigate the influences of miR-518a-5p on the viability, apoptosis, migration, and invasion of HTR8/SVneo trophoblast. In situ hybridization and real time polymerase chain reaction were used to reveal miR-518a-5p expression in placenta tissues and HTR8/SVneo cells, respectively. Cell migration and invasion were detected using Transwell inserts. Our findings indicated that NF-κB p52, p50, and p65 can bind to miR-518a-5p gene promoter. MiR-518a-5p further influences the levels of p50 and p65 but not p52. HTR8/SVneo cell viability and apoptosis were not influenced by miR-518a-5p. However, miR-518a-5p represses the migratory/invasive capacities of HTR8/SVneo cell and decreased gelatinolytic activity of MMP2 and MMP9, which was reversed by an NF-κB inhibitor. To sum up, miR-518a-5p is induced by NF-κB and represses trophoblast cell migration and invasion by the NF-κB pathway.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Signaling via the NFκB system.

          The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment

            During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pregnancy-Induced hypertension.

              Pregnancy-induced hypertension (PIH) complicates 6-10% of pregnancies. It is defined as systolic blood pressure (SBP) >140 mmHg and diastolic blood pressure (DBP) >90 mmHg. It is classified as mild (SBP 140-149 and DBP 90-99 mmHg), moderate (SBP 150-159 and DBP 100-109 mmHg) and severe (SBP ≥ 160 and DBP ≥ 110 mmHg). PIH refers to one of four conditions: a) pre-existing hypertension, b) gestational hypertension and preeclampsia (PE), c) pre-existing hypertension plus superimposed gestational hypertension with proteinuria and d) unclassifiable hypertension. PIH is a major cause of maternal, fetal and newborn morbidity and mortality. Women with PIH are at a greater risk of abruptio placentae, cerebrovascular events, organ failure and disseminated intravascular coagulation. Fetuses of these mothers are at greater risk of intrauterine growth retardation, prematurity and intrauterine death. Ambulatory blood pressure monitoring over a period of 24 h seems to have a role in predicting deterioration from gestational hypertension to PE. Antiplatelet drugs have moderate benefits when used for prevention of PE. Treatment of PIH depends on blood pressure levels, gestational age, presence of symptoms and associated risk factors. Non-drug management is recommended when SBP ranges between 140-149 mmHg or DBP between 90-99 mmHg. Blood pressure thresholds for drug management in pregnancy vary between different health organizations. According to 2013 ESH/ESC guidelines, antihypertensive treatment is recommended in pregnancy when blood pressure levels are ≥ 150/95 mmHg. Initiation of antihypertensive treatment at values ≥ 140/90 mmHg is recommended in women with a) gestational hypertension, with or without proteinuria, b) pre-existing hypertension with the superimposition of gestational hypertension or c) hypertension with asymptomatic organ damage or symptoms at any time during pregnancy. Methyldopa is the drug of choice in pregnancy. Atenolol and metoprolol appear to be safe and effective in late pregnancy, while labetalol has an efficacy comparable to methyldopa. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II antagonists are contraindicated in pregnancy due to their association with increased risk of fetopathy.
                Bookmark

                Author and article information

                Journal
                aabc
                Anais da Academia Brasileira de Ciências
                An. Acad. Bras. Ciênc.
                Academia Brasileira de Ciências (Rio de Janeiro, RJ, Brazil )
                0001-3765
                1678-2690
                2023
                : 95
                : 1
                : e20220596
                Affiliations
                [1] Huaian Jiangsu orgnameThe Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University orgdiv1Department of Gynaecology China
                [2] Huaian Jiangsu orgnameThe Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University orgdiv1Department of Pathology China
                Article
                S0001-37652023000100804 S0001-3765(23)09500100804
                10.1590/0001-3765202320220596
                ff7d4d7e-0d96-4cbc-a4c5-72c32c068bf6

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 03 September 2022
                : 12 July 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 35, Pages: 0
                Product

                SciELO Brazil


                NF-κB transcriptional factor,preeclampsia,HTR8/SVneo,invasion,miR-518a-5p

                Comments

                Comment on this article