37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volatile Isoflurane in Critically Ill Coronavirus Disease 2019 Patients—A Case Series and Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          The ongoing coronavirus pandemic is challenging, especially in severely affected patients who require intubation and sedation. Although the potential benefits of sedation with volatile anesthetics in coronavirus disease 2019 patients are currently being discussed, the use of isoflurane in patients with coronavirus disease 2019–induced acute respiratory distress syndrome has not yet been reported.

          Design:

          We performed a retrospective analysis of critically ill patients with hypoxemic respiratory failure requiring mechanical ventilation.

          Setting:

          The study was conducted with patients admitted between April 4 and May 15, 2020 to our ICU.

          Patients:

          We included five patients who were previously diagnosed with severe acute respiratory syndrome coronavirus 2 infection.

          Intervention:

          Even with high doses of several IV sedatives, the targeted level of sedation could not be achieved. Therefore, the sedation regimen was switched to inhalational isoflurane. Clinical data were recorded using a patient data management system. We recorded demographical data, laboratory results, ventilation variables, sedative dosages, sedation level, prone positioning, duration of volatile sedation and outcomes.

          Measurements & Main Results:

          Mean age (four men, one women) was 53.0 (± 12.7) years. The mean duration of isoflurane sedation was 103.2 (± 66.2) hours. Our data demonstrate a substantial improvement in the oxygenation ratio when using isoflurane sedation. Deep sedation as assessed by the Richmond Agitation and Sedation Scale was rapidly and closely controlled in all patients, and the subsequent discontinuation of IV sedation was possible within the first 30 minutes. No adverse events were detected.

          Conclusions:

          Our findings demonstrate the feasibility of isoflurane sedation in five patients suffering from severe coronavirus disease 2019 infection. Volatile isoflurane was able to achieve the required deep sedation and reduced the need for IV sedation.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19

          Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (Covid-19) pandemic. Despite widespread interest in the pathophysiology of the disease, relatively little is known about the associated morphologic and molecular changes in the peripheral lung of patients who die from Covid-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            COVID-19 pneumonia: different respiratory treatments for different phenotypes?

            The Surviving Sepsis Campaign panel recently recommended that “mechanically ventilated patients with COVID-19 should be managed similarly to other patients with acute respiratory failure in the ICU [1].” Yet, COVID-19 pneumonia [2], despite falling in most of the circumstances under the Berlin definition of ARDS [3], is a specific disease, whose distinctive features are severe hypoxemia often associated with near normal respiratory system compliance (more than 50% of the 150 patients measured by the authors and further confirmed by several colleagues in Northern Italy). This remarkable combination is almost never seen in severe ARDS. These severely hypoxemic patients despite sharing a single etiology (SARS-CoV-2) may present quite differently from one another: normally breathing (“silent” hypoxemia) or remarkably dyspneic; quite responsive to nitric oxide or not; deeply hypocapnic or normo/hypercapnic; and either responsive to prone position or not. Therefore, the same disease actually presents itself with impressive non-uniformity. Based on detailed observation of several cases and discussions with colleagues treating these patients, we hypothesize that the different COVID-19 patterns found at presentation in the emergency department depend on the interaction between three factors: (1) the severity of the infection, the host response, physiological reserve and comorbidities; (2) the ventilatory responsiveness of the patient to hypoxemia; (3) the time elapsed between the onset of the disease and the observation in the hospital. The interaction between these factors leads to the development of a time-related disease spectrum within two primary “phenotypes”: Type L, characterized by Low elastance (i.e., high compliance), Low ventilation-to-perfusion ratio, Low lung weight and Low recruitability and Type H, characterized by High elastance, High right-to-left shunt, High lung weight and High recruitability. COVID-19 pneumonia, Type L At the beginning, COVID-19 pneumonia presents with the following characteristics: Low elastance. The nearly normal compliance indicates that the amount of gas in the lung is nearly normal [4]. Low ventilation-to-perfusion (VA/Q) ratio. Since the gas volume is nearly normal, hypoxemia may be best explained by the loss of regulation of perfusion and by loss of hypoxic vasoconstriction. Accordingly, at this stage, the pulmonary artery pressure should be near normal. Low lung weight. Only ground-glass densities are present on CT scan, primarily located subpleurally and along the lung fissures. Consequently, lung weight is only moderately increased. Low lung recruitability. The amount of non-aerated tissue is very low; consequently, the recruitability is low [5]. To conceptualize these phenomena, we hypothesize the following sequence of events: the viral infection leads to a modest local subpleural interstitial edema (ground-glass lesions) particularly located at the interfaces between lung structures with different elastic properties, where stress and strain are concentrated [6]. Vasoplegia accounts for severe hypoxemia. The normal response to hypoxemia is to increase minute ventilation, primarily by increasing the tidal volume [7] (up to 15–20 ml/kg), which is associated with a more negative intrathoracic inspiratory pressure. Undetermined factors other than hypoxemia markedly stimulate, in these patients, the respiratory drive. The near normal compliance, however, explains why some of the patients present without dyspnea as the patient inhales the volume he expects. This increase in minute ventilation leads to a decrease in PaCO2. The evolution of the disease: transitioning between phenotypes The Type L patients may remain unchanging for a period and then improve or worsen. The possible key feature which determines the evolution of the disease, other than the severity of the disease itself, is the depth of the negative intrathoracic pressure associated with the increased tidal volume in spontaneous breathing. Indeed, the combination of a negative inspiratory intrathoracic pressure and increased lung permeability due to inflammation results in interstitial lung edema. This phenomenon, initially described by Barach in [8] and Mascheroni in [9] both in an experimental setting, has been recently recognized as the leading cause of patient self-inflicted lung injury (P-SILI) [10]. Over time, the increased edema increases lung weight, superimposed pressure and dependent atelectasis. When lung edema reaches a certain magnitude, the gas volume in the lung decreases, and the tidal volumes generated for a given inspiratory pressure decrease [11]. At this stage, dyspnea develops, which in turn leads to worsening P-SILI. The transition from Type L to Type H may be due to the evolution of the COVID-19 pneumonia on one hand and the injury attributable to high-stress ventilation on the other. COVID-19 pneumonia, Type H The Type H patient: High elastance. The decrease in gas volume due to increased edema accounts for the increased lung elastance. High right-to-left shunt. This is due to the fraction of cardiac output perfusing the non-aerated tissue which develops in the dependent lung regions due to the increased edema and superimposed pressure. High lung weight. Quantitative analysis of the CT scan shows a remarkable increase in lung weight (> 1.5 kg), on the order of magnitude of severe ARDS [12]. High lung recruitability. The increased amount of non-aerated tissue is associated, as in severe ARDS, with increased recruitability [5]. The Type H pattern, 20–30% of patients in our series, fully fits the severe ARDS criteria: hypoxemia, bilateral infiltrates, decreased the respiratory system compliance, increased lung weight and potential for recruitment. Figure 1 summarizes the time course we described. In panel a, we show the CT in spontaneous breathing of a Type L patient at admission, and in panel b, its transition in Type H after 7 days of noninvasive support. As shown, a similar degree of hypoxemia was associated with different patterns in lung imaging. Fig. 1 a CT scan acquired during spontaneous breathing. The cumulative distribution of the CT number is shifted to the left (well-aerated compartments), being the 0 to − 100 HU compartment, the non-aerated tissue virtually 0. Indeed, the total lung tissue weight was 1108 g, 7.8% of which was not aerated and the gas volume was 4228 ml. Patient receiving oxygen with venturi mask inspired oxygen fraction of 0.8. b CT acquired during mechanical ventilation at end-expiratory pressure at 5 cmH2O of PEEP. The cumulative distribution of the CT scan is shifted to the right (non-aerated compartments), while the left compartments are greatly reduced. Indeed, the total lung tissue weight was 2744 g, 54% of which was not aerated and the gas volume was 1360 ml. The patient was ventilated in volume controlled mode, 7.8 ml/kg of tidal volume, respiratory rate of 20 breaths per minute, inspired oxygen fraction of 0.7 Respiratory treatment Given this conceptual model, it follows that the respiratory treatment offered to Type L and Type H patients must be different. The proposed treatment is consistent with what observed in COVID-19, even though the overwhelming number of patients seen in this pandemic may limit its wide applicability. The first step to reverse hypoxemia is through an increase in FiO2 to which the Type L patient responds well, particularly if not yet breathless. In Type L patients with dyspnea, several noninvasive options are available: high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP) or noninvasive ventilation (NIV). At this stage, the measurement (or the estimation) of the inspiratory esophageal pressure swings is crucial [13]. In the absence of the esophageal manometry, surrogate measures of work of breathing, such as the swings of central venous pressure [14] or clinical detection of excessive inspiratory effort, should be assessed. In intubated patients, the P0.1 and P occlusion should also be determined. High PEEP, in some patients, may decrease the pleural pressure swings and stop the vicious cycle that exacerbates lung injury. However, high PEEP in patients with normal compliance may have detrimental effects on hemodynamics. In any case, noninvasive options are questionable, as they may be associated with high failure rates and delayed intubation, in a disease which typically lasts several weeks. The magnitude of inspiratory pleural pressures swings may determine the transition from the Type L to the Type H phenotype. As esophageal pressure swings increase from 5 to 10 cmH2O—which are generally well tolerated—to above 15 cmH2O, the risk of lung injury increases and therefore intubation should be performed as soon as possible. Once intubated and deeply sedated, the Type L patients, if hypercapnic, can be ventilated with volumes greater than 6 ml/kg (up to 8–9 ml/kg), as the high compliance results in tolerable strain without the risk of VILI. Prone positioning should be used only as a rescue maneuver, as the lung conditions are “too good” for the prone position effectiveness, which is based on improved stress and strain redistribution. The PEEP should be reduced to 8–10 cmH2O, given that the recruitability is low and the risk of hemodynamic failure increases at higher levels. An early intubation may avert the transition to Type H phenotype. Type H patients should be treated as severe ARDS, including higher PEEP, if compatible with hemodynamics, prone positioning and extracorporeal support. In conclusion, Type L and Type H patients are best identified by CT scan and are affected by different pathophysiological mechanisms. If not available, signs which are implicit in Type L and Type H definition could be used as surrogates: respiratory system elastance and recruitability. Understanding the correct pathophysiology is crucial to establishing the basis for appropriate treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prone positioning in severe acute respiratory distress syndrome.

              Previous trials involving patients with the acute respiratory distress syndrome (ARDS) have failed to show a beneficial effect of prone positioning during mechanical ventilatory support on outcomes. We evaluated the effect of early application of prone positioning on outcomes in patients with severe ARDS. In this multicenter, prospective, randomized, controlled trial, we randomly assigned 466 patients with severe ARDS to undergo prone-positioning sessions of at least 16 hours or to be left in the supine position. Severe ARDS was defined as a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (FiO2) of less than 150 mm Hg, with an FiO2 of at least 0.6, a positive end-expiratory pressure of at least 5 cm of water, and a tidal volume close to 6 ml per kilogram of predicted body weight. The primary outcome was the proportion of patients who died from any cause within 28 days after inclusion. A total of 237 patients were assigned to the prone group, and 229 patients were assigned to the supine group. The 28-day mortality was 16.0% in the prone group and 32.8% in the supine group (P<0.001). The hazard ratio for death with prone positioning was 0.39 (95% confidence interval [CI], 0.25 to 0.63). Unadjusted 90-day mortality was 23.6% in the prone group versus 41.0% in the supine group (P<0.001), with a hazard ratio of 0.44 (95% CI, 0.29 to 0.67). The incidence of complications did not differ significantly between the groups, except for the incidence of cardiac arrests, which was higher in the supine group. In patients with severe ARDS, early application of prolonged prone-positioning sessions significantly decreased 28-day and 90-day mortality. (Funded by the Programme Hospitalier de Recherche Clinique National 2006 and 2010 of the French Ministry of Health; PROSEVA ClinicalTrials.gov number, NCT00527813.).
                Bookmark

                Author and article information

                Journal
                Crit Care Explor
                Crit Care Explor
                CC9
                Critical Care Explorations
                Lippincott Williams & Wilkins (Hagerstown, MD )
                2639-8028
                21 October 2020
                October 2020
                21 October 2020
                : 2
                : 10
                : e0256
                Affiliations
                [1]All authors: Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt/Main, Germany
                Author notes
                For information regarding this article, E-mail: armin.flinspach@ 123456kgu.de
                Article
                00039
                10.1097/CCE.0000000000000256
                7587445
                33134946
                ff84a11c-1f5d-487a-b5ef-e5935b1d0970
                Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Categories
                Original Clinical Report
                Custom metadata
                TRUE

                acute respiratory distress syndrome,coronavirus disease 2019,critical care,deep sedation,severe acute respiratory syndrome coronavirus 2,volatile sedation

                Comments

                Comment on this article