57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden biomass greatest in severe disease and capable of mediating systemic inflammatory pathology. The lack of association between total parasite biomass and endothelial activation is consistent with accumulation in parts of the circulation devoid of endothelium. Endothelial activation, associated with circulating parasites, and systemic inflammation may contribute to pathology in vivax malaria, with microvascular dysfunction likely contributing to impaired tissue perfusion.

          Author Summary

          How vivax parasites cause severe malaria is not known. In contrast to falciparum parasites, the number of vivax parasites circulating in peripheral blood is low, and there is thought to be little sequestration of parasitized red cells within endothelium-lined small blood vessels in vital organs. Total parasite burden (circulating plus hidden) and activation and dysfunction of the endothelial cells lining blood vessels all contribute to severe disease in falciparum malaria, but have not been evaluated in severe vivax malaria. We measured parasite lactate dehydrogenase (pLDH) and P. vivax-pLDH (PvLDH) as proxies of total parasite biomass and found that, as in falciparum malaria, the total biomass of vivax parasites is underestimated by counting parasites circulating in peripheral blood, suggesting a hidden burden of vivax parasites. Markers of total vivax biomass were strongly associated with illness-severity and inflammatory cytokines, suggesting that this hidden burden is capable of contributing to generalised inflammation and hence severe disease. Number of peripheral vivax parasites, but not total biomass, correlated with activation of endothelial cells, suggesting that the hidden vivax-infected red cells may accumulate in parts of organs without endothelium, such as the slow-circulation of the spleen or non-blood-vessel parts of the bone marrow. Severe vivax malaria was associated with increased endothelial activation and impaired microvascular function, suggesting that these processes also contribute to impaired blood flow and disease.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.

          The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1-mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus-induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2(-/-) mice. Intravital microscopy showed normal TNF-alpha-induced leukocyte rolling in the vasculature of Angpt2(-/-)mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-alpha and modulating TNF-alpha-induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration.

            The sequestration of parasitized erythrocytes in the microvasculature of vital organs is central to the pathogenesis of severe Plasmodium falciparum malaria. This process is mediated by specific interactions between parasite adherence ligands and host receptors on vascular endothelium such as intercellular adhesion molecule-1 (ICAM-1) and CD36. Using immunohistochemistry we have examined the distribution of putative sequestration receptors in different organs from fatal cases of P. falciparum malaria and noninfected controls. Receptor expression and parasite sequestration in the brain were quantified and correlated. Fatal malaria was associated with widespread induction of endothelial activation markers, with significantly higher levels of ICAM-1 and E-selectin expression on vessels in the brain. In contrast, cerebral endothelial CD36 and thrombospondin staining were sparse, with no evidence for increased expression in malaria. There was highly significant co-localization of sequestration with the expression of ICAM-1, CD36, and E-selectin in cerebral vessels but no cellular inflammatory response. These results suggest that these receptors have a role in sequestration in vivo and indicate that systemic endothelial activation is a feature of fatal malaria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration.

              For investigation of the pathogenesis of cerebral malaria, immediate postmortem samples from brain and other tissues of patients dying with Plasmodium falciparum malaria, with (CM) or without (NCM) cerebral malaria, were processed for electron microscopy. Counts of parasitized erythrocytes (PRBCs) in cerebral and other vessels showed that the proportion of PRBCs was higher in CM than in NCM, and also that the proportion of PRBCs was higher in the brain than in other organs examined in both CM and NCM. Cerebral vessels from CM patients were more tightly packed with RBCs than those from NCM patients, but there was no significant difference in the amount or degree of endothelial damage or numbers of vessels with endothelial pseudopodia. Fibrillar (fibrin) deposits were present in a small proportion of vessels, but no thrombosis was present. There was neither acute nor chronic inflammation, and leukocytes were absent within or outside cerebral vessels. There was no immune complex deposition in cerebral vessels. Parasites in cerebral vessels were mainly trophozoites or schizonts. Occasional RBC remnants following parasite release were seen. Some parasites were degenerate, resembling crisis forms. PRBCs adhered to endothelium via surface knobs. It is concluded that there is no evidence for an inflammatory or immune pathogenesis for human cerebral malaria and that the clinical effects probably relate to anoxia and the metabolic activities of the parasites.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2015
                8 January 2015
                : 11
                : 1
                : e1004558
                Affiliations
                [1 ]Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
                [2 ]Department of Infectious Diseases, Queen Elizabeth Hospital, Sabah, Malaysia
                [3 ]Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
                [4 ]Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
                [5 ]Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
                [6 ]Insitute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore
                [7 ]Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
                McGill University, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BEB TW TWY NMA. Performed the experiments: BEB TWY MJG UP KAP. Analyzed the data: BEB NMA TWY. Wrote the paper: BEB NMA TWY RNP.

                Article
                PPATHOGENS-D-14-00443
                10.1371/journal.ppat.1004558
                4287532
                25569250
                ffa41e80-f22b-4e5d-b91f-7374031fd41a
                Copyright @ 2015

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 February 2014
                : 6 November 2014
                Page count
                Pages: 13
                Funding
                This work was supported by the Australian National Health and Medical Research Council (Program Grants 496600 and 1037304, Project Grant 1045156, fellowships to NMA [1042072] and TWY [605831], and scholarships to BEB [605831] and MJG [1074796]). RNP was supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (091625). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Plasmodium Vivax
                Medicine and Health Sciences
                Infectious Diseases
                Parasitic Diseases
                Malaria

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article