62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Waterborne Elizabethkingia meningoseptica in Adult Critical Care 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This outbreak might reflect improved diagnostic testing, indicating that E. meningoseptica is a pseudo-emerging pathogen.

          Abstract

          Elizabethkingia meningoseptica is an infrequent colonizer of the respiratory tract; its pathogenicity is uncertain. In the context of a 22-month outbreak of E. meningoseptica acquisition affecting 30 patients in a London, UK, critical care unit (3% attack rate) we derived a measure of attributable morbidity and determined whether E. meningoseptica is an emerging nosocomial pathogen. We found monomicrobial E. meningoseptica acquisition (n = 13) to have an attributable morbidity rate of 54% (systemic inflammatory response syndrome >2, rising C-reactive protein, new radiographic changes), suggesting that E. meningoseptica is a pathogen. Epidemiologic and molecular evidence showed acquisition was water-source–associated in critical care but identified numerous other E. meningoseptica strains, indicating more widespread distribution than previously considered. Analysis of changes in gram-negative speciation rates across a wider London hospital network suggests this outbreak, and possibly other recently reported outbreaks, might reflect improved diagnostics and that E. meningoseptica thus is a pseudo-emerging pathogen.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Determination of minimum inhibitory concentrations.

          Minimum inhibitory concentrations (MICs) are defined as the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight incubation, and minimum bactericidal concentrations (MBCs) as the lowest concentration of antimicrobial that will prevent the growth of an organism after subculture on to antibiotic-free media. MICs are used by diagnostic laboratories mainly to confirm resistance, but most often as a research tool to determine the in vitro activity of new antimicrobials, and data from such studies have been used to determine MIC breakpoints. MBC determinations are undertaken less frequently and their major use has been reserved for isolates from the blood of patients with endocarditis. Standardized methods for determining MICs and MBCs are described in this paper. Like all standardized procedures, the method must be adhered to and may not be adapted by the user. The method gives information on the storage of standard antibiotic powder, preparation of stock antibiotic solutions, media, preparation of inocula, incubation conditions, and reading and interpretation of results. Tables giving expected MIC ranges for control NCTC and ATCC strains are also supplied.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applying insights from biofilm biology to drug development - can a new approach be developed?

            Most of the research on bacterial pathogenesis has focused on acute infections, but much less is known about the pathogenesis of infections caused by bacteria that grow as aggregates in biofilms. These infections tend to be chronic as they resist innate and adaptive immune defence mechanisms as well as antibiotics, and the treatment of biofilm infections presents a considerable unmet clinical need. To date, there are no drugs that specifically target bacteria in biofilms; however, several approaches are in early-stage development. Here, we review current insights into biofilm physiology and pathology, and discuss how a deep insight into the physical and biological characteristics of biofilms can inform therapeutic strategies and molecular targets for the development of anti-biofilm drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov.

              The taxonomic positions of six strains (including the type strain) of Chryseobacterium meningosepticum (King 1959) Vandamme et al. 1994 and the type strain of Chryseobacterium miricola Li et al. 2004 were re-evaluated by using a polyphasic taxonomic approach. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the strains represent a separate lineage from the type strains of the Chryseobacterium-Bergeyella-Riemerella branch within the family Flavobacteriaceae (90.7-93.9 % similarities), which was supported by phenotypic differences. Combined phylogenetic and phenotypic data showed that C. meningosepticum and C. miricola should be transferred to a new genus, Elizabethkingia gen. nov., with the names Elizabethkingia meningoseptica comb. nov. (type strain, ATCC 13253(T) = NCTC 10016(T) = LMG 12279(T) = CCUG 214(T)) and Elizabethkingia miricola comb. nov. (type strain, DSM 14571(T) = JCM 11413(T) = GTC 862(T)) proposed.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                January 2016
                : 22
                : 1
                : 9-17
                Affiliations
                [1]Imperial College Healthcare NHS Trust, London, UK (L.S.P. Moore, A. Jepson, S. Ashworth, H. Donaldson, A.H. Holmes);
                [2]Imperial College London, London. (L.S.P. Moore, A.H. Holmes);
                [3]St. George’s Healthcare NHS Trust, London (D.S. Owens);
                [4]Public Health England, London (J.F. Turton)
                Author notes
                Address for correspondence: Luke S.P. Moore, National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Du Cane Rd, London W12 0NN, UK; email: l.moore@ 123456imperial.ac.uk
                Article
                15-0139
                10.3201/eid2201.150139
                4696684
                26690562
                ffb1f8b1-2936-42be-bca2-99b5dd574f10
                History
                Categories
                Research
                Research
                Waterborne Elizabethkingia meningoseptica in Adult Critical Care

                Infectious disease & Microbiology
                matrix-assisted laser desorption/ionization time-of-flight,intensive care,antimicrobial drug resistance,water,chryseobacterium meningosepticum,flavobacterium meningosepticum,elizabethkingia meningoseptica,united kingdom,adults

                Comments

                Comment on this article