564
views
1
recommends
+1 Recommend
2 collections
    5
    shares

      The focus of Nano-Horizons is the multidisciplinary field of Nanosciences & Nanotechnologies. To submit to the journal: https://unisapressjournals.co.za/index.php/NH/about/submissions

      scite_
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Room Temperature Surface Bio-Sulfurisation via Natural Sativum Annilin and Bioengineering of Nanostructured CuS/Cu 2S

      Published
      research-article
      Bookmark

            Abstract

            In this contribution, we report, for the first time, on the surface bio-sulfurisation of metallic surfaces at room temperature via natural sativum annilin. More precisely, this bio-sulfurisation is validated on bioengineered nanostructured Cu 2-XS surfaces using natural organosulfur compounds emitted from Sativum allium L. as efficient sulfurisation chemical agents. It is validated that virgin copper surfaces can be sulfurised at room temperature without adding any extra chemical or physical processes. In addition to the validation of the green sulfurisation process of the copper surface, the bioengineered Cu 2-XS exhibited a multiscale 1-D tubular morphology with Cu 2-XS nanotubules and nanocones. Such a nanostructured Cu 2-XS surface exhibited an excessive optical selectivity, a superhydrophobicity response in addition to a remarkable site selective mercury adsorption.

            Content

            Author and article information

            Journal
            Nano-Horizons
            UNISA Press
            20 March 2023
            : 2
            Affiliations
            [1 ] UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa ( https://ror.org/048cwvf49)
            [2 ] Department of Chemistry, University of South Africa;
            [3 ] Department of Physics, Adigrat University, Ethiopia ( https://ror.org/0034mdn74)
            [4 ] UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa;
            [5 ] Department of Chemistry (CMI laboratory), University of Namur, Belgium ( https://ror.org/03d1maw17)
            [6 ] IMMM, University of Le Maine, France ( https://ror.org/03a9gd656)
            [7 ] Department of Physics and Astronomy, Nottingham University, UK ( https://ror.org/01ee9ar58)
            [8 ] Department of Chemical Sciences, University of Johannesburg, South Africa ( https://ror.org/04z6c2n17)
            [9 ] INRS-Energy and Materials, Canada ( https://ror.org/04td37d32)
            Author notes
            Author information
            https://orcid.org/0000-0002-7729-4989
            Article
            10.25159/NanoHorizons.45486dad4f94
            ed1d42fa-c9ce-41f6-b557-45486dad4f94

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 28 February 2023
            : 23 March 2023
            Categories

            The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
            Chemistry,Materials science
            green/bio-sulfurisation,copper sulfide, surface nanostructuring,Cu2-XS,multifunctionality,Allium sativum L.,surface bioengineering

            References

            1. Chan Candace K., Peng Hailin, Liu Gao, McIlwrath Kevin, Zhang Xiao Feng, Huggins Robert A., Cui Yi. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology. Vol. 3(1):31–35. 2008. Springer Science and Business Media LLC. [Cross Ref]

            2. Potter R. W.. An electrochemical investigation of the system copper-sulfur. Economic Geology. Vol. 72(8):1524–1542. 1977. Society of Economic Geologists. [Cross Ref]

            3. Will Georg, Hinze Ekkehard, Abdelrahman Abdel Rahman M.. Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure. European Journal of Mineralogy. Vol. 14(3):591–598. 2002. Schweizerbart. [Cross Ref]

            4. Koto K., Morimoto N.. The crystal structure of anilite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. Vol. 26(7):915–924. 1970. International Union of Crystallography (IUCr). [Cross Ref]

            5. Grønvold Fredrik, Westrum Edgar F.. Thermodynamics of copper sulfides I. Heat capacity and thermodynamic properties of copper(I) sulfide, Cu2S, from 5 to 950 K. The Journal of Chemical Thermodynamics. Vol. 19(11):1183–1198. 1987. Elsevier BV. [Cross Ref]

            6. EVANS HOWARD T.. Crystal Structure of Low Chalcocite. Nature Physical Science. Vol. 232(29):69–70. 1971. Springer Science and Business Media LLC. [Cross Ref]

            7. Buerger M. J., Wuensch Bernhardt J.. Distribution of Atoms in High Chalcocite, Cu <sub>2</sub> S. Science. Vol. 141(3577):276–277. 1963. American Association for the Advancement of Science (AAAS). [Cross Ref]

            8. Lai Chen-Ho, Huang Kuo-Wei, Cheng Ju-Hsiang, Lee Chung-Yang, Hwang Bing-Joe, Chen Lih-Juann. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. Journal of Materials Chemistry. Vol. 20(32)2010. Royal Society of Chemistry (RSC). [Cross Ref]

            9. Martinson Alex B. F., Elam Jeffrey W., Pellin Michael J.. Atomic layer deposition of Cu2S for future application in photovoltaics. Applied Physics Letters. Vol. 94(12)2009. AIP Publishing. [Cross Ref]

            10. Xu Jijian, He Jianqiao, Ding Wei, Hong Zhanglian, Huang Fuqiang. Boosting the Stable Na Storage Performance in 1D Oxysulfide. Advanced Energy Materials. Vol. 9(20)2019. Wiley. [Cross Ref]

            11. Sun Ke, Zhao Chonghang, Lin Cheng-Hung, Stavitski Eli, Williams Garth J., Bai Jianming, Dooryhee Eric, Attenkofer Klaus, Thieme Juergen, Chen-Wiegart Yu-chen Karen, Gan Hong. Operando Multi-modal Synchrotron Investigation for Structural and Chemical Evolution of Cupric Sulfide (CuS) Additive in Li-S battery. Scientific Reports. Vol. 7(1)2017. Springer Science and Business Media LLC. [Cross Ref]

            12. Basu Mrinmoyee, Nazir Roshan, Fageria Pragati, Pande Surojit. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Scientific Reports. Vol. 6(1)2016. Springer Science and Business Media LLC. [Cross Ref]

            13. Kravchyk Kostiantyn V., Widmer Roland, Erni Rolf, Dubey Romain J.-C., Krumeich Frank, Kovalenko Maksym V., Bodnarchuk Maryna I.. Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Scientific Reports. Vol. 9(1)2019. Springer Science and Business Media LLC. [Cross Ref]

            14. Zhang Dong-Feng, Zhang Hua, Shang Yang, Guo Lin. Stoichiometry-Controlled Fabrication of Cu<sub><i>x</i></sub>S Hollow Structures With Cu<sub>2</sub>O as Sacrificial Templates. Crystal Growth &amp; Design. Vol. 11(9):3748–3753. 2011. American Chemical Society (ACS). [Cross Ref]

            15. Kim Chung Soo, Choi Sun Hee, Bang Jin Ho. New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability. ACS Applied Materials &amp; Interfaces. Vol. 6(24):22078–22087. 2014. American Chemical Society (ACS). [Cross Ref]

            16. Couve S., Gouskov L., Szepessy L., Vedel J., Castel E.. Resistivity and optical transmission of CuxS layers as a function of composition. Thin Solid Films. Vol. 15(2):223–231. 1973. Elsevier BV. [Cross Ref]

            17. Zhao Yixin, Pan Hongcheng, Lou Yongbing, Qiu Xiaofeng, Zhu JunJie, Burda Clemens. Plasmonic Cu<sub>2−<i>x</i></sub>S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. Journal of the American Chemical Society. Vol. 131(12):4253–4261. 2009. American Chemical Society (ACS). [Cross Ref]

            18. Luther Joseph M., Jain Prashant K., Ewers Trevor, Alivisatos A. Paul. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials. Vol. 10(5):361–366. 2011. Springer Science and Business Media LLC. [Cross Ref]

            19. Fan Ling, Ma Ruifang, Yang Yuhua, Chen Suhua, Lu Bingan. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy. Vol. 28:304–310. 2016. Elsevier BV. [Cross Ref]

            20. Kim Na Rae, Choi Jaewon, Yoon Hyeon Ji, Lee Min Eui, Son Seung Uk, Jin Hyoung-Joon, Yun Young Soo. Conversion Reaction of Copper Sulfide Based Nanohybrids for Sodium-Ion Batteries. ACS Sustainable Chemistry &amp; Engineering. Vol. 5(11):9802–9808. 2017. American Chemical Society (ACS). [Cross Ref]

            21. Zhang Xiaojun, Wang Guangfeng, Gu Aixia, Wei Yan, Fang Bin. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications. (45)2008. Royal Society of Chemistry (RSC). [Cross Ref]

            22. Du Weimin, Qian Xuefeng, Ma Xiaodong, Gong Qiang, Cao Hongliang, Yin Jie. Shape-Controlled Synthesis and Self-Assembly of Hexagonal Covellite (CuS) Nanoplatelets. Chemistry - A European Journal. Vol. 13(11):3241–3247. 2007. Wiley. [Cross Ref]

            23. Rui Xianhong, Tan Huiteng, Yan Qingyu. Nanostructured metal sulfides for energy storage. Nanoscale. Vol. 6(17):9889–9924. 2014. Royal Society of Chemistry (RSC). [Cross Ref]

            24. Roy Poulomi, Srivastava Suneel Kumar. Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm. Vol. 17(41):7801–7815. 2015. Royal Society of Chemistry (RSC). [Cross Ref]

            25. Tang Kaibin, Chen Di, Liu Yuanfang, Shen Guozhen, zheng Huagui, Qian Yitai. Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. Journal of Crystal Growth. Vol. 263(1-4):232–236. 2004. Elsevier BV. [Cross Ref]

            26. Lu Qingyi, Gao Feng, Zhao Dongyuan. One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. Nano Letters. Vol. 2(7):725–728. 2002. American Chemical Society (ACS). [Cross Ref]

            27. Omar S.H., Al-Wabel N.A.. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharmaceutical Journal. Vol. 18(1):51–58. 2010. Elsevier BV. [Cross Ref]

            28. Folmer J.C.W, Jellinek F. The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study. Journal of the Less Common Metals. Vol. 76(1-2):153–162. 1980. Elsevier BV. [Cross Ref]

            29. Pattrick R.A.D., Mosselmans J.F.W., Charnock J.M., England K.E.R., Helz G.R., Garner C.D., Vaughan D.J.. The structure of amorphous copper sulfide precipitates: An X-ray absorption study. Geochimica et Cosmochimica Acta. Vol. 61(10):2023–2036. 1997. Elsevier BV. [Cross Ref]

            30. Wenzel Robert N.. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial &amp; Engineering Chemistry. Vol. 28(8):988–994. 1936. American Chemical Society (ACS). [Cross Ref]

            31. Cassie A. B. D., Baxter S.. Wettability of porous surfaces. Transactions of the Faraday Society. Vol. 40:1944. Royal Society of Chemistry (RSC). [Cross Ref]

            32. Orlova Evgenija, Feoktistov Dmitriy, Kuznetsov Geniy. Investigation of drop dynamic contact angle on copper surface. EPJ Web of Conferences. Vol. 82:2015. EDP Sciences. [Cross Ref]

            33. Liu Jun, Xue Dongfeng. Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. J. Mater. Chem. Vol. 21(1):223–228. 2011. Royal Society of Chemistry (RSC). [Cross Ref]

            34. Maaza M., Ngom B. D., Nuru Z. Y., Khamlich S.. Surface-Interface Investigation and Stability of Cermet-Based Solar Absorbers by Grazing Angle X-Rays Reflectometry: Pt–Al2O3 Case. Arabian Journal for Science and Engineering. Vol. 39(7):5825–5846. 2014. Springer Science and Business Media LLC. [Cross Ref]

            35. Kotsedi L., Mthunzi P., Nuru Z.Y., Eaton S.M., Sechoghela P., Mongwaketsi N., Ramponi R., Maaza M.. Femtosecond laser surface structuring of molybdenum thin films. Applied Surface Science. Vol. 353:1334–1341. 2015. Elsevier BV. [Cross Ref]

            36. Karoro A., Nuru Z.Y., Kotsedi L., Bouziane Kh., Mothudi B.M., Maaza M.. Laser nanostructured Co nanocylinders-Al2O3 cermets for enhanced &amp; flexible solar selective absorbers applications. Applied Surface Science. Vol. 347:679–684. 2015. Elsevier BV. [Cross Ref]

            37. Thomas Siby, Hildreth Owen, Zaeem Mohsen Asle. Unveiling the role of atomic defects on the electronic, mechanical and elemental diffusion properties in CuS. Scripta Materialia. Vol. 192:94–99. 2021. Elsevier BV. [Cross Ref]

            38. Zakirov M. I., Korotchenkov O. A., Kuryliuk V. V., Optasyuk S. V., Podolyan A. A., Semen’ko M. P., Tsykanyuk B. I.. Spectral-Kinetic Characteristics of ZnS Phosphors Obtained Using the Method of Vapor Transport Synthesis in a Closed System. Journal of Applied Spectroscopy. Vol. 82(6):947–955. 2016. Springer Science and Business Media LLC. [Cross Ref]

            39. Smet Philippe F., Moreels Iwan, Hens Zeger, Poelman Dirk. Luminescence in Sulfides: A Rich History and a Bright Future. Materials. Vol. 3(4):2834–2883. 2010. MDPI AG. [Cross Ref]

            40. Ren Kaixv, Yin Pengfei, Zhou Yuzhu, Cao Xingzhong, Dong Cunku, Cui Lan, Liu Hui, Du Xiwen. Localized Defects on Copper Sulfide Surface for Enhanced Plasmon Resonance and Water Splitting. Small. Vol. 13(36)2017. Wiley. [Cross Ref]

            41. Wang Lun, Liang A.-Ni, Chen Hong-Qi, Liu Yan, Qian Bin-bin, Fu Jie. Ultrasensitive determination of silver ion based on synchronous fluorescence spectroscopy with nanoparticles. Analytica Chimica Acta. Vol. 616(2):170–176. 2008. Elsevier BV. [Cross Ref]

            42. LLOYD J. B. F.. Synchronized Excitation of Fluorescence Emission Spectra. Nature Physical Science. Vol. 231(20):64–65. 1971. Springer Science and Business Media LLC. [Cross Ref]

            43. Zhang Xiaojun, Wang Guangfeng. Luminescent CuS nanotubes as silver ion probes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Vol. 72(5):1071–1075. 2009. Elsevier BV. [Cross Ref]

            44. Morales-García Ángel, He Junjie, Soares Antonio Lenito, Duarte Hélio Anderson. Surfaces and morphologies of covellite (CuS) nanoparticles by means of ab initio atomistic thermodynamics. CrystEngComm. Vol. 19(22):3078–3084. 2017. Royal Society of Chemistry (RSC). [Cross Ref]

            45. Perdew John P., Burke Kieron, Ernzerhof Matthias. Generalized Gradient Approximation Made Simple. Physical Review Letters. Vol. 77(18):3865–3868. 1996. American Physical Society (APS). [Cross Ref]

            46. Scandolo Sandro, Giannozzi Paolo, Cavazzoni Carlo, de Gironcoli Stefano, Pasquarello Alfredo, Baroni Stefano. First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeitschrift für Kristallographie - Crystalline Materials. Vol. 220(5-6):574–579. 2005. Walter de Gruyter GmbH. [Cross Ref]

            47. Monkhorst Hendrik J., Pack James D.. Special points for Brillouin-zone integrations. Physical Review B. Vol. 13(12):5188–5192. 1976. American Physical Society (APS). [Cross Ref]

            48. Grimme Stefan, Antony Jens, Ehrlich Stephan, Krieg Helge. A consistent and accurate <i>ab initio</i> parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics. Vol. 132(15)2010. AIP Publishing. [Cross Ref]

            49. Patiño-Morales Carlos César, Jaime-Cruz Ricardo, Sánchez-Gómez Concepción, Corona Juan Carlos, Hernández-Cruz Estefani Yaquelin, Kalinova-Jelezova Ivia, Pedraza-Chaverri José, Maldonado Perla D., Silva-Islas Carlos Alfredo, Salazar-García Marcela. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants. Vol. 11(1)2021. MDPI AG. [Cross Ref]

            Comments

            Comment on this article