3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Alternative Splicing in the Postgenomic Era 

      SR Proteins and Related Factors in Alternative Splicing

      other
      ,
      Springer New York

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Predictive identification of exonic splicing enhancers in human genes.

          Specific short oligonucleotide sequences that enhance pre-mRNA splicing when present in exons, termed exonic splicing enhancers (ESEs), play important roles in constitutive and alternative splicing. A computational method, RESCUE-ESE, was developed that predicts which sequences have ESE activity by statistical analysis of exon-intron and splice site composition. When large data sets of human gene sequences were used, this method identified 10 predicted ESE motifs. Representatives of all 10 motifs were found to display enhancer activity in vivo, whereas point mutants of these sequences exhibited sharply reduced activity. The motifs identified enable prediction of the splicing phenotypes of exonic mutations in human genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic identification and analysis of exonic splicing silencers.

            Exonic splicing silencers (ESSs) are cis-regulatory elements that inhibit the use of adjacent splice sites, often contributing to alternative splicing (AS). To systematically identify ESSs, an in vivo splicing reporter system was developed to screen a library of random decanucleotides. The screen yielded 141 ESS decamers, 133 of which were unique. The silencer activity of over a dozen of these sequences was also confirmed in a heterologous exon/intron context and in a second cell type. Of the unique ESS decamers, most could be clustered into groups to yield seven putative ESS motifs, some resembling known motifs bound by hnRNPs H and A1. Potential roles of ESSs in constitutive splicing were explored using an algorithm, ExonScan, which simulates splicing based on known or putative splicing-related motifs. ExonScan and related bioinformatic analyses suggest that these ESS motifs play important roles in suppression of pseudoexons, in splice site definition, and in AS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computational definition of sequence motifs governing constitutive exon splicing.

              We have searched for sequence motifs that contribute to the recognition of human pre-mRNA splice sites by comparing the frequency of 8-mers in internal noncoding exons versus unspliced pseudo exons and 5' untranslated regions (5' untranslated regions [UTRs]) of transcripts of intronless genes. This type of comparison avoids the isolation of sequences that are distinguished by their protein-coding information. We classified sequence families comprising 2069 putative exonic enhancers and 974 putative exonic silencers. Representatives of each class functioned as enhancers or silencers when inserted into a test exon and assayed in transfected mammalian cells. As a class, the enhancer sequencers were more prevalent and the silencer elements less prevalent in all exons compared with introns. A survey of 58 reported exonic splicing mutations showed good agreement between the splicing phenotype and the effect of the mutation on the motifs defined here. The large number of effective sequences implied by these results suggests that sequences that influence splicing may be very abundant in pre-mRNA.
                Bookmark

                Author and book information

                Book Chapter
                2007
                : 107-122
                10.1007/978-0-387-77374-2_7
                314f0272-d471-4f87-b701-f5ad36b156b5
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,419

                Cited by11