11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Modern Inorganic Synthetic Chemistry 

      Hydrothermal and Solvothermal Syntheses

      edited-book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: found
          • Article: not found

          Deep eutectic solvents: syntheses, properties and applications.

          Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Room-temperature ionic liquids: solvents for synthesis and catalysis. 2.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A chromium terephthalate-based solid with unusually large pore volumes and surface area.

              We combined targeted chemistry and computational design to create a crystal structure for porous chromium terephthalate, MIL-101, with very large pore sizes and surface area. Its zeotype cubic structure has a giant cell volume (approximately 702,000 cubic angstroms), a hierarchy of extra-large pore sizes (approximately 30 to 34 angstroms), and a Langmuir surface area for N2 of approximately 5900 +/- 300 square meters per gram. Beside the usual properties of porous compounds, this solid has potential as a nanomold for monodisperse nanomaterials, as illustrated here by the incorporation of Keggin polyanions within the cages.
                Bookmark

                Author and book information

                Book Chapter
                2017
                : 73-104
                10.1016/B978-0-444-63591-4.00004-5
                4a08224f-6169-4885-b736-ffab1beb9460
                History

                Comments

                Comment on this book