7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Lipids in Plant and Algae Development 

      Roles of Lipids in Photosynthesis

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II.

          Oxygenic photosynthesis in plants, algae and cyanobacteria is initiated at photosystem II, a homodimeric multisubunit protein-cofactor complex embedded in the thylakoid membrane. Photosystem II captures sunlight and powers the unique photo-induced oxidation of water to atmospheric oxygen. Crystallographic investigations of cyanobacterial photosystem II have provided several medium-resolution structures (3.8 to 3.2 A) that explain the general arrangement of the protein matrix and cofactors, but do not give a full picture of the complex. Here we describe the most complete cyanobacterial photosystem II structure obtained so far, showing locations of and interactions between 20 protein subunits and 77 cofactors per monomer. Assignment of 11 beta-carotenes yields insights into electron and energy transfer and photo-protection mechanisms in the reaction centre and antenna subunits. The high number of 14 integrally bound lipids reflects the structural and functional importance of these molecules for flexibility within and assembly of photosystem II. A lipophilic pathway is proposed for the diffusion of secondary plastoquinone that transfers redox equivalents from photosystem II to the photosynthetic chain. The structure provides information about the Mn4Ca cluster, where oxidation of water takes place. Our study uncovers near-atomic details necessary to understand the processes that convert light to chemical energy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride.

            Photosystem II (PSII) is a large homodimeric protein-cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-A resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35 chlorophyll a molecules and 12 carotenoid molecules, 25 integral lipids and 1 chloride ion per monomer. The presence of a third plastoquinone Q(C) and a second plastoquinone-transfer channel, which were not observed before, suggests mechanisms for plastoquinol-plastoquinone exchange, and we calculated other possible water or dioxygen and proton channels. Putative oxygen positions obtained from a Xenon derivative indicate a role for lipids in oxygen diffusion to the cytoplasmic side of PSII. The chloride position suggests a role in proton-transfer reactions because it is bound through a putative water molecule to the Mn(4)Ca cluster at a distance of 6.5 A and is close to two possible proton channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.

              The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.
                Bookmark

                Author and book information

                Book Chapter
                2016
                March 30 2016
                : 21-49
                10.1007/978-3-319-25979-6_2
                575ba5bb-6e24-4b85-8aec-c7a6c6d9d543
                History

                Comments

                Comment on this book