1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Fetal Development 

      Functional Imaging of the Prenatal Brain

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

          Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological noise in oxygenation-sensitive magnetic resonance imaging.

              The physiological noise in the resting brain, which arises from fluctuations in metabolic-linked brain physiology and subtle brain pulsations, was investigated in six healthy volunteers using oxygenation-sensitive dual-echo spiral MRI at 3.0 T. In contrast to the system and thermal noise, the physiological noise demonstrates a signal strength dependency and, unique to the metabolic-linked noise, an echo-time dependency. Variations of the MR signal strength by changing the flip angle and echo time allowed separation of the different noise components and revealed that the physiological noise at 3.0 T (1) exceeds other noise sources and (2) is significantly greater in cortical gray matter than in white matter regions. The SNR in oxygenation-sensitive MRI is predicted to saturate at higher fields, suggesting that noise measurements of the resting brain at 3.0 T and higher may provide a sensitive probe of functional information. Copyright 2001 Wiley-Liss, Inc.
                Bookmark

                Author and book information

                Book Chapter
                2016
                : 429-437
                10.1007/978-3-319-22023-9_21
                c055bb59-e397-4692-9522-ba177b2d77d5
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,844