3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Cellular Processes in Myxozoans

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Independent evolution of striated muscles in cnidarians and bilaterians

          Striated muscles are present in bilaterian animals (e.g. vertebrates, insects, annelids) and some non-bilaterian eumetazoans (i.e. cnidarians and ctenophores). The striking ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin 1, 2 . Here we show that a muscle protein core set, including a Myosin type II Heavy Chain motor protein characteristic of striated muscles in vertebrates (MyHC-st), was already present in unicellular organisms before the origin of multicellular animals. Furthermore, myhc-st and myhc-non-muscle (myhc-nm) orthologues are expressed differentially in two sponges, compatible with the functional diversification of myhc paralogues before the origin of true muscles and the subsequent deployment of MyHC-st in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess myhc-st orthologues but lack crucial components of bilaterian striated muscles, such as troponin complex and titin genes, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of novel proteins to a pre-existing, ancestral contractile apparatus may serve as a paradigm for the evolution of complex animal cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whirling disease: re-emergence among wild trout.

            Whirling disease of rainbow trout is caused by Myxobolus cerebralis, a myxozoan parasite possessing a life cycle well adapted to the natural environments where salmonid fish are found. Whirling disease was first described in Europe in 1898 among farmed rainbow trout but recent occurrences have been devastating to wild trout in North America. The disease is considered a major threat to survival of wild rainbow trout in the intermountain west of the United States. Difficulties in containing the spread and potentially eliminating the pathogen are tied to features of a complex life cycle involving two hosts, the salmonid fish and an aquatic oligochaete. Details of the morphologic development of the parasite have been described in each host but only now are we beginning to appreciate the breadth of interactions between these developmental forms and the sequential responses of the host. Fundamental mechanisms of the recognition and attachment of the parasite to the hosts, how host immunity is evaded and the unknown influences of environmental factors all contribute to a rather poor understanding of the biology of the parasite. Although the biology and ecology of the salmonid host are better known than for the oligochaete host, our knowledge is inadequate to interpret their complex interactions with the parasite. This uncertainty precludes the development of effective management activities designed to enhance the viability and productivity of wild trout populations in M. cerebralis-positive river systems. Improving our understanding of the hosts, the parasite and the environmental factors determining their interaction should provide for more focused and effective control methods for containing the spread and devastating effects whirling disease is causing to our wild trout populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) to Fredericella sultana (Bryozoa: Phylactolaemata) by various fish species.

              Tetracapsuloides bryosalmonae is a myxozoan parasite of salmonids and freshwater bryozoans, which causes proliferative kidney disease (PKD) in the fish host. To test which fish species are able to transmit T. bryosalmonae to bryozoans, an infection experiment was conducted with 5 PKD-sensitive fish species from different genera. Rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, brook trout Salvelinus fontinalis, grayling Thymallus thymallus and northern pike Esox lucius were cohabitated with T. bryosalmonae-infected Fredericella sultana colonies and then subsequently cohabitated with statoblast-reared parasite free Bryozoa. Statoblasts from infected colonies were tested by PCR to detect cryptic stages of T. bryosalmonae, which may indicate vertical transmission of the parasite. In this study, brown trout and brook trout were able to infect Bryozoa, while there was no evidence that rainbow trout and grayling were able to do so. Few interstitial kidney stages of the parasite were detected by immunohistochemistry in brown trout and brook trout, while rainbow trout and grayling showed marked proliferation of renal interstitial tissue and macrophages with numerous parasite cells. Intraluminal stages in the kidney tubules were only detected in brown trout and rainbow trout. In contrast to previous observations, pike was not susceptible to PKD in these trials according to the results of T. bryosalmonae-specific PCR. No DNA of T. bryosalmonae was detected in any statoblast.
                Bookmark

                Author and book information

                Book Chapter
                2015
                April 2 2015
                : 139-154
                10.1007/978-3-319-14753-6_8
                d9a8a84a-f652-494a-89d3-64ecd3926f4f
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,498

                Cited by6