Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Encyclopedia of Clinical Neuropsychology 

      Megalencephaly

      other
      ,
      Springer International Publishing

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Brain growth across the life span in autism: age-specific changes in anatomical pathology.

          Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autism.

            Autism spectrum disorders are characterised by severe deficits in socialisation, communication, and repetitive or unusual behaviours. Increases over time in the frequency of these disorders (to present rates of about 60 cases per 10,000 children) might be attributable to factors such as new administrative classifications, policy and practice changes, and increased awareness. Surveillance and screening strategies for early identification could enable early treatment and improved outcomes. Autism spectrum disorders are highly genetic and multifactorial, with many risk factors acting together. Genes that affect synaptic maturation are implicated, resulting in neurobiological theories focusing on connectivity and neural effects of gene expression. Several treatments might address core and comorbid symptoms. However, not all treatments have been adequately studied. Improved strategies for early identification with phenotypic characteristics and biological markers (eg, electrophysiological changes) might hopefully improve effectiveness of treatment. Further knowledge about early identification, neurobiology of autism, effective treatments, and the effect of this disorder on families is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

              Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and book information

                Book Chapter
                2018
                November 22 2017
                : 1-6
                10.1007/978-3-319-56782-2_1565-2
                e2803081-5bac-44d9-83b5-3c086b8653e0
                History

                Comments

                Comment on this book

                Book chapters

                Similar content181