7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protection of retinal ganglion cells in glaucoma: Current status and future

      , ,
      Experimental Eye Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis.

          Contemporary data for causes of vision impairment and blindness form an important basis of recommendations in public health policies. Refreshment of the Global Vision Database with recently published data sources permitted modelling of cause of vision loss data from 1990 to 2015, further disaggregation by cause, and forecasts to 2020.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

            The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-formation of optic cups and storable stratified neural retina from human ESCs.

              In this report, we demonstrate that an optic cup structure can form by self-organization in human ESC culture. The human ESC-derived optic cup is much larger than the mouse ESC-derived one, presumably reflecting the species differences. The neural retina in human ESC culture is thick and spontaneously curves in an apically convex manner, which is not seen in mouse ESC culture. In addition, human ESC-derived neural retina grows into multilayered tissue containing both rods and cones, whereas cone differentiation is rare in mouse ESC culture. The accumulation of photoreceptors in human ESC culture can be greatly accelerated by Notch inhibition. In addition, we show that an optimized vitrification method enables en bloc cryopreservation of stratified neural retina of human origin. This storage method at an intermediate step during the time-consuming differentiation process provides a versatile solution for quality control in large-scale preparation of clinical-grade retinal tissues. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Experimental Eye Research
                Experimental Eye Research
                Elsevier BV
                00144835
                April 2021
                April 2021
                : 205
                : 108506
                Article
                10.1016/j.exer.2021.108506
                123d2590-6832-4adc-95a9-c2a7cde80bdc
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article