Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Adenoviral-Mediated Gene Transfer of Nitric Oxide Synthase Isoforms and Vascular Cell Proliferation

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Many vascular diseases are associated with reduced nitric oxide (NO) bioavailability. Nitric oxide synthase (NOS) gene therapy to the vasculature is a possible treatment for vascular disease as a means of increasing NO bioavailability, and this may be achieved using any of the NOS isoforms. The aim of our study was to compare the effects of adenoviral-mediated overexpression of the most commonly used NOS isoforms eNOS and iNOS on vascular cell proliferation. Methods: Human coronary artery smooth muscle cells (HCSMCs) and human umbilical vein endothelial cells (HUVECs) were transduced with adenoviral vectors encoding eNOS or iNOS at a multiplicity of infection of 100. Control cells were exposed to AdNull (empty vector) or diluent alone. Transgene expression was sought by Western blotting. The Greiss assay was used to measure nitrite levels. Cell proliferation was assessed by cell counting on days 0, 3 and 6. Apoptosis was sought using FACS analysis. Angiogenesis was measured using a commercially available in vitro kit. Results: Expression of both isoforms was detected in transduced cells by Western blot at all three time points. NOS transduction resulted in increased nitrite levels with higher levels seen in iNOS- compared to eNOS-transduced cells. Cell proliferation was diminished in AdeNOS- and AdiNOS-transduced cells compared with non-transduced cells on days 3 and 6 in both HCSMCs and HUVECs. Apoptosis was not detected in either cell line with either of the isoforms at any timepoint studied. Both eNOS and iNOS gene transfer caused a reduction in angiogenesis. Conclusions: NOS gene transfer to both endothelial and vascular smooth muscle cells is antiproliferative and antiangiogenic. The biological effect is identical with both isoforms and there is no evidence to support a differential effect on endothelial and vascular smooth muscle cell biology.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Nitric oxide: an endogenous modulator of leukocyte adhesion.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.

            Endothelium-derived relaxing factor has been recently identified as nitric oxide. The purpose of this study was to determine if vasodilator drugs that generate nitric oxide inhibit vascular smooth muscle mitogenesis and proliferation in culture. Three chemically dissimilar vasodilators, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and isosorbide dinitrate, dose-dependently inhibited serum-induced thymidine incorporation by rat aortic smooth muscle cells. Moreover, 8-bromo-cGMP mimicked the antimitogenic effect of the nitric oxide-generating drugs. The antimitogenic effect of S-nitroso-N-acetylpenicillamine was inhibited by hemoglobin and potentiated by superoxide dismutase, supporting the view that nitric oxide was the ultimate effector. Sodium nitroprusside and S-nitroso-N-acetylpenicillamine significantly decreased the proliferation of vascular smooth muscle cells. Moreover, the inhibition of mitogenesis and proliferation was shown to be independent of cell damage, as documented by several criteria of cell viability. These results suggest that endogenous nitric oxide may function as a modulator of vascular smooth muscle cell mitogenesis and proliferation, by a cGMP-mediated mechanism.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitric oxide synthases: which, where, how, and why?

                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2006
                September 2006
                20 September 2006
                : 43
                : 5
                : 462-472
                Affiliations
                Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
                Article
                95163 J Vasc Res 2006;43:462–472
                10.1159/000095163
                16921253
                5d1586bf-46f4-4cf0-9b51-868972fbfca3
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 02 November 2005
                : 06 June 2006
                Page count
                Figures: 8, References: 30, Pages: 11
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Nitric oxide,Gene therapy,Angiogenesis

                Comments

                Comment on this article