14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions

      Materials
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering of the meniscus.

          Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new treatment modalities for repair of meniscus tears and eventually will enable the replacement of a whole meniscus by a tissue-engineered construct. Many questions remain to be answered before the final goal, a tissue-engineered meniscus is available for clinical implementation. These questions are related to the selection of an optimal cell type, the source of the cells, the need to use growth factor(s) and the type of scaffold that can be used for stimulation of differentiation of cells into tissues with optimal phenotypes. Particularly in a loaded, highly complex environment of the knee, optimal mechanical properties of such a scaffold seem to be of utmost importance. With respect to cells, autologous meniscus cells seems the optimal cell source for tissue engineering of meniscus tissue, but their availability is limited. Therefore research should be stimulated to investigate the suitability of other cell sources for the creation of meniscus tissue. Bone marrow stroma cells could be useful since it is well known that they can differentiate into bone and cartilage cells. With respect to growth factors, TGF-beta could be a suitable growth factor to stimulate cells into a fibroblastic phenotype but the problems of TGF-beta introduced into a joint environment should then be solved. Polyurethane scaffolds with optimal mechanical properties and with optimal interconnective macro-porosity have been shown to facilitate ingrowth and differentiation of tissue into fibro-cartilage. However, even these materials cannot prevent cartilage degeneration in animal models. Surface modification and/or seeding of cells into the scaffolds before implantation may offer a solution for this problem in the future.This review focuses on a number of specific questions; what is the status of the development of procedures for lesion healing and how far are we from replacing the entire meniscus by a (tissue-engineered) prosthesis. Subquestions related to the type of scaffold used are: is the degree of tissue ingrowth and differentiation related to the initial mechanical properties and if so, what is the influence of those properties on the subsequent remodelling of the tissue into fibro-cartilage; what is the ideal pore geometry and what is the optimal degradation period to allow biological remodelling of the tissue in the scaffold. Finally, we will finish with our latest results of the effect of tear reconstruction and the insertion of prostheses on articular cartilage degradation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polyurethane elastomers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates.

              Understanding the mechanism of sugar formation and stabilization is important for constraining theories on the abiotic origin of complex biomolecules. Although previous studies have produced sugars from small molecules through the formose and related reactions, the product mixtures are complex and unstable. We have demonstrated that simple two- and three-carbon molecules (glycolaldehyde and glyceraldehyde), in the presence of aqueous sodium silicate, spontaneously form silicate complexes of four- and six-carbon sugars, respectively. Silicate selects for sugars with a specific stereochemistry and sequesters them from rapid decomposition. Given the abundance of silicate minerals, these observations suggest that formose-like reactions may provide a feasible pathway for the abiotic formation of biologically important sugars, such as ribose.
                Bookmark

                Author and article information

                Journal
                10.3390/ma10030247
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article