173
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell models by following with different administration routes and penetrating through physiological barriers, subsequently being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and facilitate their wide application.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Graphene: Status and Prospects

            A. K. Geim (2010)
            Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene-based antibacterial paper.

              Graphene is a monolayer of tightly packed carbon atoms that possesses many interesting properties and has numerous exciting applications. In this work, we report the antibacterial activity of two water-dispersible graphene derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Such graphene-based nanomaterials can effectively inhibit the growth of E. coli bacteria while showing minimal cytotoxicity. We have also demonstrated that macroscopic freestanding GO and rGO paper can be conveniently fabricated from their suspension via simple vacuum filtration. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced and easily processed to make freestanding and flexible paper with low cost, we expect this new carbon nanomaterial may find important environmental and clinical applications.
                Bookmark

                Author and article information

                Journal
                Particle and Fibre Toxicology
                Part Fibre Toxicol
                Springer Science and Business Media LLC
                1743-8977
                December 2016
                October 31 2016
                December 2016
                : 13
                : 1
                Article
                10.1186/s12989-016-0168-y
                22dcce63-a4f5-489b-9d6e-6f9083033082
                © 2016
                History

                Comments

                Comment on this article