16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Willis metamaterial on a structured beam

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bianisotropy is common in electromagnetics whenever a cross-coupling between electric and magnetic responses exists. However, the analogous concept for elastic waves in solids, termed as Willis coupling, is more challenging to observe. It requires coupling between stress and velocity or momentum and strain fields, which is difficult to induce in non-negligible levels, even when using metamaterial structures. Here, we report the experimental realization of a Willis metamaterial for flexural waves. Based on a cantilever bending resonance, we demonstrate asymmetric reflection amplitudes and phases due to Willis coupling. We also show that, by introducing loss in the metamaterial, the asymmetric amplitudes can be controlled and can be used to approach an exceptional point of the non-Hermitian system, at which unidirectional zero reflection occurs. The present work extends conventional propagation theory in plates and beams to include Willis coupling, and provides new avenues to tailor flexural waves using artificial structures.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Locally resonant sonic materials

          Liu, Zhang, Mao (2000)
          We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gold helix photonic metamaterial as broadband circular polarizer.

            We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Optical negative-index metamaterials

                Bookmark

                Author and article information

                Journal
                06 July 2018
                Article
                1807.02285
                bf157292-67e1-478f-9e3d-1f1c4388311c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                21 pages, 3 figures
                physics.app-ph

                Technical & Applied physics
                Technical & Applied physics

                Comments

                Comment on this article