13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The timing of action determines reward prediction signals in identified midbrain dopamine neurons

      research-article
      1 , 1
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animals adapt behavior in response to informative sensory cues using multiple brain circuits. The activity of midbrain dopamine (mDA) neurons is thought to convey a critical teaching signal: reward prediction error (RPE). Although RPE signals are thought to be essential to learning, little is known about the dynamic changes in mDA neuron activity as animals learn about novel sensory cues and appetitive rewards. Here we describe a large dataset of cell-attached recordings of identified dopaminergic neurons as naïve mice learned a novel cue-reward association. During learning mDA neuron activity results from summation of sensory cue-related and movement initiation-related response components. These components are both a function of reward expectation yet dissociable. Learning produces an increasingly precise coordination of action initiation following sensory cues that results in apparent RPE correlates. Our data thus provide new insights into circuit mechanisms underlying a critical computation in a highly conserved learning circuit.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sensitive red protein calcium indicators for imaging neural activity

          Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Causal Link Between Prediction Errors, Dopamine Neurons and Learning

            Situations where rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally-precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.

              The mesocorticolimbic dopamine system is essential for cognitive and emotive brain functions and is thus an important target in major brain diseases like schizophrenia, drug addiction, and attention deficit hyperactivity disorder. However, the cellular basis for the diversity in behavioral functions and associated dopamine-release pattern within the mesocorticolimbic system has remained unclear. Here, we report the identification of a type of dopaminergic neuron within the mesocorticolimbic dopamine system with unconventional fast-firing properties and small DAT/TH mRNA expression ratios that selectively projects to prefrontal cortex and nucleus accumbens core and medial shell as well as to basolateral amygdala. In contrast, well-described conventional slow-firing dopamine midbrain neurons only project to the lateral shell of the nucleus accumbens and the dorsolateral striatum. Among this dual dopamine midbrain system defined in this study by converging anatomical, electrophysiological, and molecular properties, mesoprefrontal dopaminergic neurons are unique, as only they do not possess functional somatodendritic Girk2-coupled dopamine D2 autoreceptors.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                17 October 2018
                15 October 2018
                November 2018
                15 April 2019
                : 21
                : 11
                : 1563-1573
                Affiliations
                [1 ]Address: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
                Author notes

                Author Contributions:

                Data collection and analysis were performed by L.T.C. with input from J.T.D. Simulations were implemented by J.T.D. with input from L.T.C. All other aspects of the work were the product of both authors.

                Correspondence and requests for materials should be sent to: luketc82@ 123456gmail.com (L.T.C.) or dudmanj@ 123456janelia.hhmi.org (J.T.D.)
                Article
                HHMIMS1504858
                10.1038/s41593-018-0245-7
                6226028
                30323275
                23fe9846-05a7-4d9f-9d4c-8a4fabf9d75a

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article